Navigation Links
Preventing diabetes damage: Zinc's effects on a kinky, two-faced cohort
Date:6/30/2011

ANN ARBOR, Mich.---In type 2 diabetes, a protein called amylin forms dense clumps that shut down insulin-producing cells, wreaking havoc on the control of blood sugar. But zinc has a knack for preventing amylin from misbehaving.

Recent research at the University of Michigan offers new details about how zinc performs this "security guard" function. The findings appear in the July 8 issue of the Journal of Molecular Biology.

Amylin is something of a two-faced character. In healthy people who have normal levels of zinc in the insulin-producing islet cells of the pancreas, amylin actually pitches in to help with blood sugar regulation, says Ayyalusamy Ramamoorthy, a U-M professor of chemistry and of biophysics in the College of Literature, Science, and the Arts. In fact, an analog of amylin called Symlin is used in conjunction with insulin to manage blood sugar levels in diabetics.

This good behavior on amylin's part comes about because zinc acts like a security guard at a rock concert, whose job is keeping fans from turning troublesome and destructive. In molecular terms, zinc prevents amylin---also known as Islet Amyloid Polypeptide (IAPP)---from forming harmful clumps similar to those found in Alzheimer's, Parkinson's, Huntington's and various other degenerative diseases.

But in a zinc-starved cellular environment of someone with type 2 diabetes, amylin has no watchful guard to rein it in. It's free to clump together with other amylin molecules in the molecular equivalent of a gang.

The clumping ultimately leads to the formation of ribbon-like structures called fibrils, and because fibril formation has been linked to a number of human diseases, it was long assumed that fibrils themselves were toxic. But accumulating evidence now suggests that the actual culprits may be shorter snippets that assemble in the process of forming full-length fibrils. For this reason, it's important to understand the whole aggregation process, not just the structure of the final fibril.

Ramamoorthy and colleagues are trying to better understand exactly how zinc interacts with amylin, in hopes of finding ways of treating or preventing type 2 diabetes and other diseases associated with aging. In earlier work, they showed that when zinc binds to amylin, at a point near the middle of the amylin molecule, the amylin molecule kinks, which interferes with the formation of toxic clumps. In the current work, they show that the binding of zinc in the middle makes one end of the amylin molecule, called the N-terminus, become more orderly.

"This is significant, because the N-terminus is very important in clump formation and amylin toxicity," Ramamoorthy said.

In addition, the researchers found that before amylin can begin forming fibrils, zinc must be rousted from its nesting place. This eviction is costly in energetic terms, and the sheer expense of it discourages fibril formation. And because a single zinc molecule can bind to several amylin molecules, it ties up the amylin in assemblages that, unlike certain other aggregations, are not intermediates in the pathway that leads to fibril formation.

However zinc, like amylin, has a dual nature. At conditions similar to those outside islet cells, where even a tiny amount of amylin aggregates in the blink of an eye, zinc inhibits fibril formation. But in conditions resembling the inside of the cell, the inhibitory effect begins to wane and other factors, like insulin, take on zinc's security guard duties. Ramamoorthy's group found that this happens because amylin has not one, but two binding sites for zinc. Zinc prefers to bind at the first site---the one in the middle of the amylin molecule, where its binding discourages fibril formation. But when there's too much zinc around, all the binding sites in the middle positions are occupied and zinc must attach to amylin at the second site, which counteracts the effect of the first site. This may explain why decreased levels of insulin---the backup security guard---inside islet cells of diabetics result in islet cell death.

The experiments described in the Journal of Molecular Biology paper were all done in an artificial environment, not a living organism where zinc levels constantly fluctuate. In future experiments, Ramamoorthy hopes to more closely approximate natural conditions in order to better understand how amylin interacts with islet cells and what triggers its toxicity toward the cells. The results of these studies will facilitate the development of metal-based therapies for type 2 diabetes, similar to the promising metal-based drugs developed for Alzheimer's and other neurodegenerative diseases, Ramamoorthy said.


'/>"/>

Contact: Nancy Ross-Flanigan
rossflan@umich.edu
734-647-1853
University of Michigan
Source:Eurekalert

Related biology news :

1. Fluctuations before the fall: Predicting and preventing environmental collapse
2. Major breakthrough in preventing premature birth announced by NIH/WSU
3. Preventing heart problems while keeping a cool head
4. Preventing cancer, quite naturally
5. Preventing cells from getting the kinks out of DNA
6. Vaccines preventing pneumococcal disease protect African children with sickle-cell disease
7. Preventing gastric cancer with antibiotics
8. Preventing or reversing inflammation after heart attack, stroke may require 2-pronged approach
9. New finding in cell migration may be key to preventing clots, cancer spread
10. UC Davis research confirms benefits of calcium and vitamin D in preventing fractures
11. New study suggests minke whales are not preventing recovery of larger whales
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/21/2016)... WAKEFIELD, Massachusetts , March 22, 2016 ... and facial recognition with passcodes for superior security ... MESG ), a leading provider of secure digital communications ... pilot their biometric technology and offer enterprise customers, particularly ... provide secure facial recognition and voice authentication within a ...
(Date:3/15/2016)... Yissum Research Development Company of the Hebrew University ... University, announced today the formation of Neteera Technologies ... biological indicators. Neteera Technologies has completed its first round ... Neteera,s ... from sweat ducts, enables reliable and speedy biometric identification, ...
(Date:3/11/2016)... , March 11, 2016 ... new market research report "Image Recognition Market by Technology ... (Marketing and Advertising), by Deployment Type (On-Premises and Cloud), ... To 2022", published by MarketsandMarkets, the global market is ... to USD 29.98 Billion by 2020, at a CAGR ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... 2016 , ... During a two day program for start-up ... CereScan’s CEO, John Kelley, joined other Denver business leaders in providing business basics ... Denver area business community, shared his top fundamental learnings in building an effective, ...
(Date:4/28/2016)... 2016 The report "Cryocooler Market ... Service (Technical Support, Product Repairs & Refurbishment, Preventive Maintenance, ... to 2022", published by MarketsandMarkets, the global market is ... at a CAGR of 7.29% between 2016 and 2022. ... 94 Figures spread through 159 Pages and in-depth TOC ...
(Date:4/28/2016)... ... April 28, 2016 , ... ... in recruiting top industry experts, and expanding its LATAM network and logistics capabilities. ... for clients to manage their clinical trial projects. , The expansion will provide ...
(Date:4/27/2016)... ... 2016 , ... The Pittcon Organizing Committee is pleased to announce that Charles ... member of Committee since 1987. Since then, he has served in a number of ... chairman for both the program and exposition committees. In his professional career, Dr. Gardner ...
Breaking Biology Technology: