Navigation Links
Preparing for a thaw: How Arctic microbes respond to a warming world
Date:11/6/2011

WALNUT CREEK/BERKELEY, Calif.From the North Pole to the Arctic Ocean, the frozen soils within this region keep an estimated 1,672 billion metric tons of carbon out of the Earth's atmosphere. This sequestered carbon is more than 250 times the amount of greenhouse gas emissions attributed to the United States in the year 2009. As global temperatures slowly rise, however, so too do concerns regarding the potential impacts upon the carbon cycle when the permafrost thaws and releases the carbon that has been trapped for eons. Like so many of the planet's critical environmental processes, the smallest playersmicrobeshave the most significant influence over the eventual outcome.

To answer this question, researchers from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), the Earth Sciences Division (ESD) within Berkeley Lab, and the U.S. Geological Survey collaborated to understand how the microbes found in permafrost respond to their warming environment. Among the findings, published online November 6 in the journal Nature, is the draft genome of a novel microbe that produces methane, a far more potent greenhouse gas than carbon dioxide. This microbe, not yet named, lives in the permafrost, and was assembled out of the collection of genomesthe metagenomeisolated from the frigid soil. The assembly challenge is similar to building one complete jigsaw puzzle from a large collection of pieces from many different puzzles.

"The permafrost is poised to become a major source of greenhouse gases as the temperature in the Arctic is expected to increase dramatically compared to the expected temperature increase in many other regions of the world," said ESD's Janet Jansson, corresponding author and initiator of the study (first supported by a grant to her from DOE Laboratory Directed Research and Development funds). "By applying metagenomics to study microbial community composition and function, we can help to answer questions about how the currently uncultivated and unstudied microbial species residing in permafrost cycle organic carbon and release greenhouse gases during thaw," Jansson said. "This will provide valuable information that could lead to improved carbon cycle models and eventual mitigation strategies."

According to the U.S. Environmental Protection Agency, in 2009 fossil fuel combustion accounted for 5.2 billion metric tons of the nation's carbon dioxide emissions, a tiny fraction (about 3/10 of 1 percent) of the carbon dioxide trapped in the Arctic permafrost. Understanding the microbial processes in the frozen soils and the impacts of microbial activity on carbon dioxide processes, has been a project of study co-author and USGS researcher Mark Waldrop, whose 2010 Community Sequencing Program project, another with the DOE JGI (in collaboration with Jansson), focuses on comparing the short-term microbial response of the thawing permafrost to the longer-term processes.

Waldrop cored meter-deep permafrost samples from a peaty black spruce forest along Hess Creek, Alaska. Each sample was then divided to distinguish between the seasonally thawed "active" layer, which comprised the top third of the core, and the permanently frozen "permafrost" horizon underneath. The samples were incubated during thaw at 5C and then sent to the Jansson lab for DNA extraction and analyses At the DOE JGI, the team led by Director Eddy Rubin and his postdoctoral fellow Rachel Mackelprang, (now at California State University-Northridge) sequenced microbial DNA from the samples. "These microbial communities are extremely diverse," said Mackelprang. "A single gram of soil may contain thousands of different bacterial species and billions of cells. Additionally, most of these microbes cannot be grown in the laboratory, making this an extremely difficult area to study." The data were then analyzed in collaboration with Jansson and her team at ESD, including Kristen DeAngelis, Maude David, and Krystle Chavarria.

At DOE JGI, Mackelprang and her colleagues generated nearly 40 billion bases of raw DNA sequence, necessary due to the high microbial diversity of the soil. They identified several microbes that produced methane as a byproduct, and were able to assemble a draft genome of a novel methanogen. "This is the first example of a successful assembly of a draft genome from a highly complex soil metagenome," the authors wrote. "The abundance of this novel methanogen suggests that it may be an important player in methane production under frozen conditions." Additionally, the genomic data revealed that the microbe had genes for nitrogen fixation, making this study also the first to describe a potentially nitrogen-fixing methanogen in permafrost soil.

The researchers identified many genes involved in carbon and nitrogen cycling in the metagenomic data, and found that their levels of abundance shifted in response to their thawing habitat. "These detailed analyses reveal for the first time the rapid and dynamic response of permafrost microbial communities to thaw," they concluded. "The thaw-induced shifts that we detected directly support conceptual models of carbon and nitrogen cycling in arctic soils, in which microbes play a central role in greenhouse gas emissions and destabilization of stored permafrost carbon."


'/>"/>

Contact: David Gilbert
degilbert@lbl.gov
DOE/Joint Genome Institute
Source:Eurekalert

Related biology news :

1. Moessbauer group of Mainz University preparing for participation in Japanese moon mission
2. How New York City is preparing for climate change
3. RV Polarstern launches 28th Antarctic season
4. Antarctic killer whales may seek spa-like relief in the tropics
5. NASA, NOAA data show significant Antarctic ozone hole remains
6. Engineering team heads to Antarctica to explore hidden lake
7. University of Texas marine scientists awarded $5.6 million for study of critical Arctic environment
8. Unprecedented Arctic ozone loss occurred last winter
9. Arctic ground squirrels muscle up to hunker down
10. Ancient glacial melting process similar to existing concerns about Antarctica, Greenland
11. Scientists report dramatic carbon loss from massive Arctic wildfire
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2016)... PROVO and SANDY, Utah ... Ontario (NSO), which operates the highest sample volume laboratory ... and Tute Genomics and UNIConnect, leaders in clinical sequencing ... announced the launch of a project to establish the ... panel. NSO has been contracted by ...
(Date:3/15/2016)... 2016 Yissum Research Development Company of ... of the Hebrew University, announced today the formation of ... of various human biological indicators. Neteera Technologies has completed ... private investors. ... of electromagnetic emissions from sweat ducts, enables reliable and ...
(Date:3/10/2016)... PUNE, India , March 10, 2016 ... to a new market research report "Identity and Access ... SSO, & Audit, Compliance, and Governance), by Organization Size, ... Forecast to 2020", published by MarketsandMarkets, The market is ... to USD 12.78 Billion by 2020, at a Compound ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... ... April 27, 2016 , ... The Board of ... appointment of John Tilton as Chief Commercial Officer.  Mr. Tilton joined Biohaven from ... founding commercial leaders responsible for the commercialization of multiple orphan drug indications. ...
(Date:4/27/2016)... ... 27, 2016 , ... A compact PET scanner called NuPETâ„¢ ... (Magnetic Resonance Imaging) in existing third-party MRI systems. PET and MRI are complementary ... subjects. Simultaneous PET/MRI imaging offers a solution to many challenges that face researchers ...
(Date:4/27/2016)... MedDay, a biotechnology company focused on the treatment of ... as Chairman of its Board of Directors. Catherine ... who contributed to the rapid development of the Company since ... her career in strategy consulting and investment banking in ...  She held C-Suite level roles in some of ...
(Date:4/26/2016)... ... April 26, 2016 , ... BaseHealth , ... joined the company as Chief Business Officer. Arianpour, a genomics pioneer and visionary ... market, was most recently Chief Commercial Officer of Pathway Genomics. He has held ...
Breaking Biology Technology: