Navigation Links
Predicting risk of stroke from one's genetic blueprint
Date:2/25/2009

Boston, MAA new statistical model could be used to predict an individual's lifetime risk of stroke, finds a study from the Children's Hospital Informatics Program (CHIP). Using genetic information from 569 hospital patients, the researchers showed that their predictive model could estimate an individual's overall risk of cardioembolic stroke -- the most common form of stroke -- with 86 percent accuracy. The findings are reported in the March issue of Stroke.

"For complex diseases like stroke, it's not just a single mutation that will kill you," explains CHIP researcher Marco Ramoni, PhD, the study's senior author, who is also an Associate Professor at Harvard Medical School. "More likely it is an interaction of many factors."

Ramoni, in collaboration with Karen Furie, MD, the director of the stroke unit at Massachusetts General Hospital (MGH), and Rachel Ramoni, DMD, ScD, of the Harvard School of Dental Medicine, identified 569 patients that had presented to MGH's emergency department and outpatient neurology clinics between 2002 and 2005 with symptoms of suspected stroke. They collected genetic information from the 146 patients with confirmed cardioembolic stroke, and 423 controls who were followed and found not to have stroke, and looked for 1,313 genetic variants (called single nucleotide polymorphisms or SNPs) known to correlate with stroke. The SNPs that each patient had were then entered into the model -- known as a Bayesian network which not only identified the genetic variants that correlated with stroke, but also determined how these factors interplayed and the strength of these interactions.

"The model looks for factors, combines them and finds out which are the best predictive factors," explains Ramoni. "It's never one factor at a time, it's always more than one factor. What this technology allows you to do is to generate a network of factors that contribute to stroke."

The researchers found that the model was able to predict an individual's risk of cardioembolic stroke with an accuracy of 86 percent. Ultimately, Ramoni envisions doctors using it as a diagnostic tool: a patient's genetic information would simply be entered into the model, which would correlate and analyze the data and output an overall probability of stroke, based on the stroke-related SNPs in the patient's genome. "It sounds like magic," says Ramoni. "But it's just a piece of technology. It gives hope that we will be able to predict early on whether someone is at risk of getting stroke, and allow you to convince them to make life changes."

"The next step is to get more SNPs," Ramoni adds. "These analyses looked at only 1,313 out of 3.3 million known SNPs. Even a million SNPs would cover the vast majority of the genome. We would get much better predictions."

Ramoni also says that by identifying all the genetic variants that modulate the risk of stroke, it could provide insight into its mechanisms and provide targets for future drugs. He is currently refining the model and believes that this technology could be used to predict inherited risk of many other conditions.


'/>"/>

Contact: Keri Stedman
keri.stedman@childrens.harvard.edu
617-919-3110
Children's Hospital Boston
Source:Eurekalert

Related biology news :

1. UBC study establishes formula for predicting climate change impact on salmon stocks
2. Predicting acute GVHD by gene expression could improve liver stem cell transplant outcomes
3. Predicting the distribution of creatures great and small
4. Predicting the perfect predator
5. Predicting the radiation risk to ESAs astronauts
6. Predicting growth hormone treatment success
7. Trial seeks genetic fingerprint for predicting drug effectiveness
8. Researchers identify a cell type that limits stroke damage
9. Statins may treat blood vessel disorder that can lead to fatal strokes
10. Stroke Belt deaths tied to non-traditional risk factors
11. Study helps explain connection between sleep apnea, stroke and death
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2017)... May 5, 2017 RAM Group ... a new breakthrough in biometric authentication based on ... mechanical properties to perform biometric authentication. These new sensors ... material created by Ram Group and its partners. This ... transportation, supply chains and security. Ram Group is ...
(Date:4/13/2017)... Calif. , April 13, 2017 UBM,s ... York will feature emerging and evolving technology ... Both Innovation Summits will run alongside the expo portion ... speaker sessions, panels and demonstrations focused on trending topics ... largest advanced design and manufacturing event will take place ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... the first-ever genomics analysis platform specifically designed for life science researchers to ... of pioneering researcher Rosalind Franklin, who made a major contribution to the ...
(Date:10/11/2017)... LINDA, CA (PRWEB) , ... October 11, 2017 ... ... to upregulate any gene in its endogenous context, enabling overexpression experiments and avoiding ... (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function studies. ...
(Date:10/11/2017)... ... 2017 , ... ComplianceOnline’s Medical Device Summit is back for its 4th year. ... San Francisco, CA. The Summit brings together current and former FDA office bearers, regulators, ... government officials from around the world to address key issues in device compliance, quality ...
(Date:10/11/2017)... 11, 2017  VMS BioMarketing, a leading provider of patient ... Clinical Nurse Educator (CNE) network, which will launch this week. ... among health care professionals to enhance the patient care experience ... and other health care professionals to help women who have ... ...
Breaking Biology Technology: