Navigation Links
Predicting oil changes in industrial applications without interrupting operations

This news release is available in German.

Predictive maintenance of hard-to-access plants, no unnecessary oil changes, no unnecessary laboratory costs and less environmental impact. These are just some of the benefits offered by a new system that can monitor the condition of lubricating oils, hydraulic oils and other fluids in industrial installations without interrupting ongoing operations. The method was developed by engineers from Saarbrcken in collaboration with project partners. The compact sensor system is available as a portable unit or can be built into industrial plants, wind turbines and other machinery. The system, which uses optical methods to measure the oil's chemical makeup and the degree of particle loading, can also predict the best time for an oil change. The team of engineers led by Professor Andreas Schtze from Saarland University and ZeMA, the Centre for Mechatronics and Automation Technology in Saarbrcken, will be showcasing their work from April 7th to April 11th at the Saarland Research and Innovation Stand at HANNOVER MESSE (Hall 2, Stand C 48).

Failing to change the oil at the right time can cause serious damage to machinery and equipment. A fact that is just as true for cars as it is for large industrial installations. Over time, a lubricating oil used to minimize friction, reduce wear and prevent overheating will become contaminated with fine metal dust and particles from abrasive processes. The oil will also gradually oxidize. And the additives that help to optimize the oil's properties also have only a finite lifetime. At some point, the oil will no longer be able to act as an effective lubricant. According to Professor Andreas Schtze, the key problem is that it is not obvious when exactly the oil needs changing. In the case of plants or installations that are difficult to reach such as offshore wind turbines the method adopted up to now has been either to take oil samples and have them examined in costly laboratory analyses or to simply change the oil at some regular interval. "As a result, a great deal of effort is expended in changing oil that is still actually useable, which is costly for both the operator and the environment," explains Professor Schtze.

In collaboration with partners from other universities and industry, Schtze's team at the Lab for Measurement Technology and at ZeMA have developed a measurement system that can be integrated directly into industrial installations where it continuously measures and monitors oil ageing and degradation while the installation continues to operate. The data from the measurement system are currently transmitted by mobile radio communication so that analysis and assessment can be performed off-site. A portable version of the system also exists. At HANNOVER MESSE, the engineers will be exhibiting a small case that contains all the equipment needed (from the measuring cell to the display unit) for on-site testing of the oil's quality. "Our system allows us to identify and avert potential damage early on. We can predict when maintenance work will be needed and plant operators can plan accordingly," explains Schtze. The method is also suitable for use with hydraulic systems. And the measurement system can test not only oils, but can also be used to monitor the condition of other fluids.

The methods developed by the engineers in Saarbrcken involve shining light into the liquid being monitored. In one case, light from a laser diode is scattered by any particles present in the oil or fluid. "Each different type of particle scatters the light in a particular way, causing more or less light to be measured in the various spatial directions. The scattered light is then recorded by photodiodes and the signals analysed. The system allows us to distinguish between metal dust, other solid particles and air bubbles and to determine the concentration of each," explains engineer Eliseo Pignanelli, who has been involved in refining the system. The second optical technique measures the absorption of infrared light by the fluid at specific wavelengths as it flows through the measurement system. "This permits us to draw conclusions about the chemical state of the oil, because chemical changes to the oil will cause changes in the light spectrum that we record," says Pignanelli. This spectroscopic analysis also enables the presence of water in the oil to be detected.

The team of engineers at Saarbrcken have been developing the system in a number of research projects, including the "FluidSens" and "NaMiFlu" projects that are collaborative efforts involving partners from academic institutions and from industry. Industrial partners include HYDAC Electronic GmbH in Gersweiler and EADS Deutschland GmbH (Innovation Works). One of the main areas of research concerned optimizing the optical and mechanical properties of the nanostructured layers used in the microsensors and adapting them for use at high pressures. Working with ZeMA in Saarbrcken, the technology is now being developed into a market-ready product.

Contact: Andreas Schütze
Saarland University

Related biology news :

1. Disease-carrying colonizers on the move: Predicting the spread of ticks across Canada
2. Researchers identified a protein useful in predicting the risk of pulmonary metastases in breast cancer patients
3. Discovery of mechanisms predicting response to new treatments in colon cancer
4. Predicting how patients respond to therapy
5. New model could help fill data gap in predicting historical air pollution exposure
6. Cellular landscaping: Predicting how, and how fast, cells will change
7. Predicting the age at menopause of women having suffered from childhood cancers
8. Predicting a low carbon future for Toronto
9. Predicting the next eye pathogen; analysis of a novel adenovirus
10. Understanding the past and predicting the future by looking across space and time
11. Predicting the life expectancy of solar modules
Post Your Comments:
Related Image:
Predicting oil changes in industrial applications without interrupting operations
(Date:11/20/2015)... , November 20, 2015 ... company focused on the growing mobile commerce market and ... Gino Pereira , was recently interviewed on ... will air on this weekend on Bloomberg Europe ... America . --> NXTD ) ("NXT-ID" or ...
(Date:11/19/2015)... , Nov. 19, 2015  Based on its ... & Sullivan recognizes BIO-key with the 2015 Global Frost ... year, Frost & Sullivan presents this award to the ... catering to the needs of the market it serves. ... line meets and expands on customer base demands, the ...
(Date:11/19/2015)... 2015  Although some 350 companies are actively involved ... few companies, according to Kalorama Information. These include Roche Diagnostics, ... market share of the 6.1 billion-dollar molecular testing market, ... for Molecular Diagnostic s .    ... controlled by one company and only a handful of ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... India , November 26, 2015 ... The Global Biobanking Market 2016 - 2020 report ... by maintaining integrity and quality in long-term samples, ... enabling long-term cost-effectiveness. Automation minimizes manual errors such ... the technical efficiency. Further, it plays a vital ...
(Date:11/25/2015)... Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) ... a stockholder rights plan (Rights Plan) in an effort ... carryforwards (NOLs) under Section 382 of the Internal Revenue ... PharmAthene,s use of its NOLs could be substantially ... defined in Section 382 of the Code. In general, ...
(Date:11/25/2015)... , November 25, 2015 2 ... première fois les différences entre les souches bactériennes ... celles des êtres humains . Ces recherches ... et envisager la prise en charge efficace de ... diagnostiqués chez les chats .    --> ...
(Date:11/25/2015)... Studies reveal the differences in ... pave the way for more effective treatment for one of ...   --> --> Gum ... in cats, yet relatively little was understood about the bacteria ... been conducted by researchers from the WALTHAM Centre for Pet ...
Breaking Biology Technology: