Navigation Links
Predators drive the evolution of poison dart frogs' skin patterns

This release is available in French.

MONTRAL, November 21, 2011 Natural selection has played a role in the development of the many skins patterns of the tiny Ranitomeya imitator poison dart frog, according to a study that will be published in an upcoming edition of American Naturalist by University of Montreal biologist Mathieu Chouteau. The researcher's methodology was rather unusual: on three occasions over three days, at two different sites, Chouteau investigated the number of attacks that had been made on fake frogs, by counting how many times that had been pecked. Those that were attacked the least looked like local frogs, while those that came from another area had obviously been targeted.

The brightly coloured frogs that we find in tropical forests are in fact sending a clear message to predators: "don't come near me, I'm poisonous!" But why would a single species need multiple patterns when one would do? It appears that when predators do not recognize a poisonous frog as being a member of the local group, it attacks in the hope that it has chanced upon edible prey. "When predators see that their targets are of a different species, they attack. Over the long term, that explains how patterns and colours become uniform in an area," said Bernard Angers, who directed Chouteau's doctoral research.

A total of 3,600 life-size plasticine models, each less than one centimetre long, were used in the study. The menagerie was divided between two carefully identified sites in the Amazon forest. "The trickiest part was transporting my models without arousing suspicion at the airport and customs controls," Chouteau said. He chose plasticine following a review of scientific literature. "Many scientists have successfully used plasticine to create models of snakes, salamanders and poison dart frogs." The Peruvian part of the forest proved to be ideal for this study, as two radically different looking groups of frogs are found there: one, living on a plain, has yellow stripes, and the other, living on a mountain, has green patches. The two colonies are ten kilometers apart. 900 fake frogs were placed in each area in carefully targeted positions. Various combinations of colours and patterns were used.

Chouteau was particularly surprised by the "very small spatial scale at which the evolutionary process has taken place." Ten kilometers of separation sufficed for a clearly different adaptation to take place. "A second surprise was the learning abilities of the predator community, especially the speed at which the learning process takes place when a new and exotic defensive signal is introduced on a massive scale," Chouteau said.

This process could be at origin of the wide range of colour patterns that are observed not only in frogs but also many species of butterflies, bees, and other animals. Mathieu Chouteau is in fact currently undertaking post-doctoral research into the Heliconius genus of butterfly. "Considering that this kind of project requires regular field work, I have taken up residence in the small town of Tarapoto, where I am responsible for the opening of a research centre that will facilitate the study of neotropical butterfly mimicry," he said.


Contact: William Raillant-Clark
University of Montreal

Related biology news :

1. Hind wings help butterflies make swift turns to evade predators, study finds
2. As super-predators, humans reshape their prey at super-natural speeds
3. Sexy or repulsive? Butterfly wings can be both to mates and predators
4. Predators ignore peculiar prey
5. Siberian jays use complex communication to mob predators
6. Venomous sea snakes play heads or tails with their predators
7. Lizards change their diet to avoid predators
8. Move over predators: Plants can control the food chain too -- from the bottom up
9. Return of top predators is key to ecological future
10. Making its predators tremble: Multiple defenses act synergistically in aspen
11. Cycad pest uses small size to hide from predators
Post Your Comments:
Related Image:
Predators drive the evolution of poison dart frogs' skin patterns
(Date:3/27/2017)... CENTRE, N.Y. , March 27, 2017 /PRNewswire-USNewswire/ ... Healthcare Information and Management Systems Society (HIMSS) Analytics ... Outpatient EMR Adoption Model sm . In addition, ... 12% of U.S. hospitals using an electronic medical ... CHS for its high level of EMR usage ...
(Date:3/24/2017)... 2017 Research and Markets has announced the ... & Trends - Industry Forecast to 2025" report to their ... The Global ... CAGR of around 15.1% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
(Date:3/23/2017)... 23, 2017 Research and Markets has announced ... & Trends - Industry Forecast to 2025" report to their ... The ... CAGR of around 8.8% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... compared the implantation and pregnancy rates in frozen and fresh in vitro ... of progesterone and maternal age to IVF success. , After comparing the results ...
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
(Date:10/10/2017)... International research firm Parks Associates announced today that ... TMA 2017 Annual Meeting , October 11 in Scottsdale, ... security market and how smart safety and security products impact the competitive ... Parks Associates: Smart Home Devices: Main ... "The residential security market has experienced continued ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... 13 prestigious awards honoring scientists who have made outstanding contributions ... scheduled symposium during Pittcon 2018, the world’s leading conference and exposition for laboratory ...
Breaking Biology Technology: