Navigation Links
Powerful genome barcoding system reveals large-scale variation in human DNA
Date:5/31/2010

MADISON Genetic abnormalities are most often discussed in terms of differences so miniscule they are actually called "snips" changes in a single unit along the 3 billion that make up the entire string of human DNA.

"There's a whole world beyond SNPs single nucleotide polymorphisms and we've stepped into that world," says Brian Teague, a doctoral student in genetics at the University of Wisconsin-Madison. "There are much bigger changes in there."

Variation on the order of thousands to hundreds of thousands of DNA's smallest pieces large swaths varying in length or location or even showing up in reverse order appeared 4,205 times in a comparison of DNA from just four people, according to a study published May 31 in the Proceedings of the National Academy of Sciences.

Those structural differences popped into clear view through computer analysis of more than 500 linear feet of DNA molecules analyzed by the powerful genome mapping system developed over nearly two decades by David C. Schwartz, professor of chemistry and genetics at UW-Madison.

"We probably have the most comprehensive view of the human genome ever," Schwartz says. "And the variation we're seeing in the human genome is something we've known was there and important for many years, but we haven't been able to fully study it."

To get a better picture of those structural variations, Schwartz and his team developed the Optical Mapping System, a wholly new type of genome analysis that directly examines millions of individual DNA molecules.

Common systems for analyzing genomes typically chop long DNA molecules into fragments less than a couple thousand base pairs long and multiply them en masse, like a copy machine, to develop a chemical profile of each piece.

Reading such small sections without seeing their place in the larger picture of DNA leaves out critical understanding. To make matters worse, interesting parts of the human genome are often found within DNA's trickiest stretches.

"Short pieces could really come from so many different locations," Teague says. "An enormous part of the genome is composed of repeating DNA, and important differences are often associated with areas that have a lot of repeated sections."

It's a problem inherent to the method that has irked Schwartz for a long time.

"Our new technology quickly analyzes huge DNA molecules one at a time, which eliminates the copy machine step, reduces the number of DNA jig-saw pieces and increases the unique qualities of each piece," Schwartz says. "These advantages allow us to discover novel genetic patterns that are otherwise invisible."

The genome mapping system in Schwartz' lab takes in much larger pieces, at least millions of base pairs at a time. Sub-millimeter sections of single DNA molecules thread-like and, in full, 4 to 5 inches long in humans are coaxed onto treated glass surfaces.

The long strands of DNA straighten out on the glass, and are clipped into sections by enzymes and scanned by automated microscopes. The pattern of these cuts along each molecule thread produces a unique barcode, identifying the DNA molecule and revealing genetic changes it harbors.

The scan results are passed along to databases for storage and retrieval, and handled by software that stitches collections of bar-coded molecules together with others to reconstitute the entire strand of DNA and quickly pinpoint genetic changes.

"What we have here is a genetic version of Google Earth," Schwartz says. "I could sit down with you and start at chromosome 1, and we could pan and zoom through each one and actually see the genetic changes across an individual's genome."

To Teague, the Optical Mapping System provides access to a new frame of reference on human genetic variation.

"I've got a whole folder of papers on diseases that are ascribable to these structural differences," he says. "If you can see the genetic basis for those diseases, you can figure out the molecular differences in their development and pick drug targets to treat or cure or avoid them altogether. We fit into that storyline right up at the front."

It's been a long story.

"We've been thinking about these large structural variations for decades," says Schwartz, whose work is funded by the National Institutes for Health and the National Science Foundation. "The problem was that the system for discerning large structural variants was not available. So we had to build it."

The integrative building process included studying the behavior of fluids at microscopic scale, manipulating large DNA molecules and placing barcodes on them, automating high-powered microscopes to analyze single molecules, organizing the computing infrastructure to handle the data and algorithms to analyze whole human genome, and more.

And after notable turns analyzing the DNA of corn, parasites, bacteria and even the mold that caused the 19th-century potato famine in Ireland, Schwartz has arrived at the human genome, his original target.

"It's like you spend years making a telescope, and then one day you point it at the sky and you discover things that no one else could see," he says. "We've integrated so many scientific problems together in a holistic way, which lets us solve very hard problems."

The result is a 30-day turnaround for one graduate student to analyze one human genome, but that's just a waypoint. Schwartz's team isn't just pointing at the sky. They are aiming for the stars by building new systems for personal genomics.

"This will go even further," says Konstantinos Potamousis, the lab's instrumentation innovator and a co-author on the study, which included researchers from UW-Madison, Mississippi State University, the University of Pittsburgh, the University of Southern California and the University of Washington. "Our systems scale nicely into the future because we've pioneered single molecule technologies. The newer systems we are building will provide more genetic information in far less time."

With development complete on new molecular devices, software and analysis, a large piece of the system is already in place.

And the speed of innovation will synergize the pace of genome analysis.

"Our newer genome analysis systems, if commercialized, promise genome analysis in one hour, at under $1,000," Schwartz says. "And we require that high speed and low cost to power the new field of personal genomics."


'/>"/>

Contact: David C. Schwartz
dcschwartz@wisc.edu
608-265-0546
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Enzyme alerts cells powerful army to repair DNA damage
2. Powerful integration of lipid metabolic profiling with gene expression analysis
3. In the laboratory, green tea proves a powerful medicine against severe sepsis
4. Blood pressure drug telmisartan shows powerful activity against stroke
5. There is powerful evidence of evolution in human DNA
6. Gene discovery made easier with powerful new networking technique
7. Powerful yet reliable proteomics techniques are the focus of a new methods book
8. Explorers marvel at Brittlestar City on seamount in powerful current swirling around Antarctica
9. KAUST and IBM to build 1 of the fastest and most powerful supercomputers
10. Apelin hormone injections powerfully lower blood sugar
11. Powerful online tool for protein analysis provided pro bono by Stanford geneticist
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... -- Research and Markets has announced the addition of ... offering. ... market to grow at a CAGR of 30.37% during the period ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
(Date:4/5/2017)... April 5, 2017 Today HYPR Corp. ... the server component of the HYPR platform is officially ... the end-to-end security architecture that empowers biometric authentication across ... has already secured over 15 million users across the ... of connected home product suites and physical access represent ...
(Date:3/30/2017)... 2017 The research team of The Hong ... fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery and ... speed and accuracy for use in identification, crime investigation, immigration control, ... ... A research team led ...
Breaking Biology News(10 mins):
(Date:10/7/2017)... ... October 06, 2017 , ... ... and applications consulting for microscopy and surface analysis, Nanoscience Instruments is now ... Analytical offers a broad range of contract analysis services for advanced applications. ...
(Date:10/7/2017)... Mass. , Oct. 6, 2017  The ... work of three scientists, Jacques Dubochet, Joachim ... breakthrough developments in cryo-electron microscopy (cryo-EM) ... technology within the structural biology community. The winners ... Scientists can now routinely produce highly resolved, three-dimensional ...
(Date:10/6/2017)... ... 06, 2017 , ... On Tuesday, October 24th, ABC² (Accelerate ... first-ever adaptive clinical trial for glioblastoma (GBM). The featured speaker will be Dr. ... open to the public, but registration is required. , WHAT: ABC² Brain ...
(Date:10/5/2017)... ... 05, 2017 , ... Understanding the microbiome, the millions of bacteria that live ... You Are My Future, the newest exhibit on display at the University City Science ... condition through the lens of the gut microbiome. , Gut Love opens October ...
Breaking Biology Technology: