Navigation Links
Powerful enzymes create ethanol from agricultural harvest waste
Date:1/8/2013

The mainly EU-funded DISCO project coordinated by VTT Technical Research Centre of Finland has developed powerful enzymes, which accelerate plant biomass conversion into sugars and further into products such as bioethanol. The project's results include lignin-tolerant enzymes and enzyme cocktails for processing spruce, straw, corn cob and wheat bran. The commercialisation of these enzymes has now begun in the Netherlands.

The EU's DISCO project developed powerful enzymes and enzyme cocktails suitable for various raw materials, with the purpose of converting agricultural side streams into fermentable sugars and further into products such as bioethanol. Plant biomass was chosen as the raw material for the project, since it contains lignocellulosic biomass, which is an abundant raw material.

The commercialisation process of the second-generation bioethanol industry, which uses lignocellulosic biomass instead of starch, has reached critical momentum: there are a total of 15 plants being constructed in Europe, the Americas and Asia. Lignocellulosic biomass use will substantially expand the market for industrial enzymes. The total industrial enzyme market is currently worth approximately 2.7 million euros per annum.

The raw materials studied in the project were spruce, straw, corn cob and wheat bran used as animal feed. In Finland, the proportion of forest biomass, and conifer biomass in particular, is significant.

Lignocellulosic biomass consists of cellulose, hemicellulose and lignin. Agricultural harvest waste contains large amounts of lignocellulosic biomass, which can be converted industrially into fermentable sugars with the help of enzymes. Microbes can then be used to produce various chemicals, such as bioethanol, from the sugars. Lignocellulosic biomass contains substantial amounts of lignin, which interferes with enzyme activity.

The DISCO project produced new knowledge on the inactivating property of lignin, which helped scientists develop enzymes that tolerate lignin better. New information on enzymes and activities that break down hemicellulose, vital for the efficient exploitation of plant biomass, was also obtained during the project.

British scientists participating in the project determined the structural characteristics of various raw materials. This information can be used to select appropriate enzyme cocktails for raw materials when upgrading plant biomass.

The Dutch company Dyadic is currently commercialising the enzymes developed in the project.

Research Professor Kristiina Kruus of VTT coordinated the DISCO project, which had a total of 11 participants from seven countries. VTT's scientific role in the project related to discovering and developing enzymes from environmental samples as well as culture collections.
'/>"/>

Contact: Kristiina Kruus
kristiina.kruus@vtt.fi
358-207-225-143
VTT Technical Research Centre of Finland
Source:Eurekalert

Related biology news :

1. Powerful sequencing technology decodes DNA folding pattern
2. New study discovers powerful function of single protein that controls neurotransmission
3. Powerful new approach to attack flu virus
4. UTMB researchers create powerful new method to analyze genetic data
5. Powerful class of antioxidants may be potent Parkinsons treatment
6. Black belts white matter shows how a powerful punch comes from the brain
7. Powerful tool to fight wildlife crime unveiled
8. Team solves birth and migration mysteries of cortexs powerful inhibitors, chandelier cells
9. UF researcher tests powerful new tool to advance ecology, conservation
10. Black piranha, megapiranha have most powerful bites of fish living or extinct, finds GW researcher
11. ORNL process improves catalytic rate of enzymes by 3,000 percent
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016   Acuant ... and verification solutions, has partnered with RightCrowd ... solutions for Visitor Management, Self-Service Kiosks and ... products that add functional enhancements to existing ... corporations and venues with an automated ID ...
(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Sequenom, Inc. (NASDAQ: ... healthier lives through the development of innovative products and ... the United States denied its petition ... claims of Sequenom,s U.S. Patent No. 6,258,540 (",540 Patent") ... established by the Supreme Court,s Mayo Collaborative Services v. ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... ... 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona ... or pleural mesothelioma. Their findings are the subject of a new article on the ... are signposts in the blood, lung fluid or tissue of mesothelioma patients that can ...
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
Breaking Biology Technology: