Navigation Links
Power from formic acid
Date:5/7/2008

This release is available in German.

One of the central challenges of our time is the supply of enough environmentally friendly and resource-efficient energy to our society. In this context, hydrogen technology has taken on increased importance. Bjrn Loges, Albert Boddien, Henrik Junge, and Matthias Beller at the Leibniz Institute of Catalysis in Rostock have now succeeded in the controlled extraction of hydrogen from formic acidwithout the need for the high-temperature reforming process usually involved in other hydrogen generation systems. As they report in the journal Angewandte Chemie, this hydrogen source, generated at room temperature, can be directly introduced into fuel cells.

Hydrogen-powered fuel cells are the cleanest source of energy because they only produce one type of exhaust gas: water vapor. However, it is not yet practicable to transport and store hydrogen, which is a gas and cannot be pumped into a tank as easily as gasoline. Storage systems currently in use are large and heavy, expensive, and complex. It would thus be better to couple the fuel cell directly to a hydrogen-producing material, which would supply the fuel cell on demand. Aside from methane and methanol, renewable resources such as biomass and its fermentation products (e.g. bioethanol) are the most promising starting materials for this technology. The serious disadvantage is that their conversion only works at temperatures above 200 C, which consumes a significant portion of the energy produced.

The researchers from Rostock have now developed a feasible process for the on-demand release of hydrogen; they produce hydrogen from formic acid (HCO2H). In the presence of an amine (e.g. N,N-dimethylhexylamine) and with a suitable catalyst (e.g. the commercially available ruthenium phosphine complex [RuCl2(PPH3)2]), formic acid is selectively converted into carbon dioxide and hydrogen at room temperature. A simple activated charcoal filter is enough to purify the hydrogen gas for use in a fuel cell. The use of formic acid for hydrogen storage allows the advantages of established hydrogen/oxygen fuel cell technology to be combined with those of liquid fuels. Formic acid is nontoxic and easy to store. Because formic acid can be generated catalytically from CO2 and biomass-derived hydrogen, the cycle is CO2 neutral in principle.

Will we be replacing gasoline with formic acid in the future" It is not inconceivable, but initial applications requiring smaller amounts of energy are more probable. For the use of fuel cells in portable electrical devices, says Beller, this nascent formic acid technology opens up new possibilities in the short term.


'/>"/>

Contact: Matthias Beller
Matthias.Beller@catalysis.de
49-381-128-1113
Wiley-Blackwell
Source:Eurekalert  

Related biology news :

1. University of Arizona scientist shares in discovery of microbe filaments power
2. The future of solar-powered houses is clear
3. Power of molecular imaging reveals secrets of the heart
4. The bombardier beetle, power venom and spray technologies
5. Continents loss to oceans boosts staying power
6. Wildcat Power Cord repairs cruciate ligament in dairy cows knee
7. Fujitsu Combines Capacity, Performance and Power Efficiency Into the Industrys First 320GB 7200 RPM 2.5" Sata Hard Disk Drive
8. The surprising power of the pill
9. Work with power grids leads to cell biology discovery
10. New twist on lifes power source
11. U of I researcher develops power-packed soy breakfast cereal
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Power from formic acid
(Date:3/22/2016)... , PROVO and ... -- Newborn Screening Ontario (NSO), which operates the highest ... for molecular testing, and Tute Genomics and UNIConnect, leaders ... technology respectively, today announced the launch of a project ... sequencing (NGS) testing panel. NSO has ...
(Date:3/15/2016)... , March 15, 2016 Yissum ... , the technology-transfer company of the Hebrew University, announced ... of remote sensing technology of various human biological indicators. ... raising $2.0 million from private investors. ... based on the detection of electromagnetic emissions from sweat ...
(Date:3/10/2016)... 2016 --> ... "Identity and Access Management Market by Component (Provisioning, Directory ... by Organization Size, by Deployment, by Vertical, and by ... The market is estimated to grow from USD 7.20 ... at a Compound Annual Growth Rate (CAGR) of 12.2% ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... , May 3, 2016 ... Assessing Developers and Producers of Those Competitor Biologics  ... to Companies, Activities and Prospects ,  Who ... companies? And what are their sales potentials? Discover, ... you see results, trends, opportunities and revenue forecasting. ...
(Date:5/2/2016)... , May 2, 2016 Q ... its technology partner Mannin Research Inc. will be attending ... which takes place from May 1-5, 2016 in ... be meeting with its vendors and research partners. The ... development goals and other collaborative opportunities for the MAN-01 ...
(Date:4/29/2016)... ... 30, 2016 , ... The MIT bioLogic design team has won multiple ... bacterial properties can be applied to fabric and formed into living interfaces between body ... to humidity change. The team harvested Natto cells and applied them to fabric with ...
(Date:4/29/2016)... ... April 29, 2016 , ... During a two ... into a viable company, CereScan’s CEO, John Kelley, joined other Denver business leaders ... and mentor in the Denver area business community, shared his top fundamental learnings ...
Breaking Biology Technology: