Navigation Links
Potential new approach to regenerating skeletal muscle tissue

An innovative strategy for regenerating skeletal muscle tissue using cells derived from the amniotic fluid is outlined in new research published by scientists at the UCL Institute of Child Health.

The paper shows that damaged muscle tissues can be treated with cells derived from the fluids which surround the fetus during development, leading to satisfactory regeneration and muscle activity. The treatment resulted in longer survival in mice affected by a muscle variant of spinal muscular atrophy. This is the first time that regeneration of diseased muscle tissue has been obtained using cells derived from amniotic fluid.

The research appears in the journal Stem Cells, is authored by Dr Paolo de Coppi (UCL Institute of Child Health and surgeon at Great Ormond Street Hospital) and colleagues in Paris and Padova, and represents an impressive development in the growing field of regenerative medicine.

Muscle derived stem cells are presently considered the best source for muscle regeneration. However they cannot be used to treat muscular dystrophies because the stem cells themselves are affected in individuals with these conditions. Due to this challenge, other cell sources have been explored but so far no definitive treatment has been successful.

De Coppi's team has demonstrated that intravenous transplantation of amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. This is the first study to demonstrate the functional and stable integration of AFS cells into skeletal muscle, highlighting their value as a cell source for the treatment of muscular dystrophies.

However, the research is still at a relatively early stage as the work has only been carried out in animal models.

Dr Coppi said: "Spinal muscular atrophy is a genetic disease affecting one in 6,000 births. It is currently incurable and in its most severe form children with the condition may not survive long into childhood. Children with a less severe form face the prospect of progressive muscle wasting, loss of mobility and motor function. There is an urgent need for improved treatments.

"We are excited by this potential new approach for regenerating skeletal muscle tissue, but much more research is needed. We now need to perform more in-depth studies with human AFS cells in mouse models to see if it is viable to use cells derived from the amniotic fluid to treat diseases affecting skeletal muscle tissue."


Contact: David Weston
University College London

Related biology news :

1. Nuisance seaweed found to produce compounds with biomedical potential
2. Folic acid food enrichment potentially protective against childhood cancers
3. Gene therapy for hearing loss: Potential and limitations
4. Beehive extract shows potential as prostate cancer treatment
5. Researchers find potential dark side to diets high in beta-carotene
6. Gallbladder shown as potential stem cell source for regenerative liver and metabolic disease
7. Researchers report potential for a moderate New England red tide in 2012
8. Interventional radiology: Potential breakthrough to treat mens enlarged prostate
9. New insight into mechanisms behind autoimmune diseases suggests a potential therapy
10. Epigenetic signatures direct the repair potential of reprogrammed cells
11. Researchers find safer way to use common but potentially dangerous medication
Post Your Comments:
(Date:10/29/2015)... October 29, 2015 NXTD ... company focused on the growing mobile commerce market ... that StackCommerce, a leading marketplace to discover and ... Wocket® smart wallet on StackSocial for this holiday ... or the "Company"), a biometric authentication company focused ...
(Date:10/27/2015)... 2015 In the present market scenario, security ... various industry verticals such as banking, healthcare, defense, electronic ... demand for secure & simplified access control and growing ... hacking of bank accounts, misuse of users, , and ... PC,s, laptops, and smartphones are expected to provide potential ...
(Date:10/27/2015)... 2015 Synaptics Inc. (NASDAQ: SYNA ), the ... has adopted the Synaptics ® ClearPad ® ... its newest flagship smartphones, the Nexus 5X by LG ... --> --> Synaptics works closely ... collaboration in the joint development of next generation technologies. ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: ... 11,000 post-share consolidation (or 1,100,000 pre-share consolidation) Series ... Warrants") subject to the previously disclosed November 1, ... which will result in the issuance of 365,518 ... issuance of such shares, there will be approximately ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... are paramount. Insertion points for in-line sensors can represent a weak spot where ... InTrac 781/784 series of retractable sensor housings , which are designed to tolerate ...
(Date:11/24/2015)... Vancouver, BC (PRWEB) , ... November 24, 2015 ... ... to our customer, OrthoAccel® Technologies, Inc., on being named to Deloitte's 2015 Technology ... Creation Technologies’ Texas facility, OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device ...
(Date:11/24/2015)... ANGELES , Nov. 24, 2015 ... biotechnology company focused on the discovery, development and commercialization ... , Ph.D., Chief Executive Officer, is scheduled to present ... 1, 2015 at 10:50 a.m. EST, at The Lotte ... City . . ...
Breaking Biology Technology: