Navigation Links
Potential gene therapy approach to sickle cell disease highlighted at ASH
Date:12/11/2012

BOSTON, Dec. 11, 2012 /PRNewswire-USNewswire/ -- Researchers at Dana-Farber/Children's Hospital Cancer Center (DF/CHCC) have taken the first preliminary steps toward developing a form of gene therapy for sickle cell disease. In an abstract presented on Dec. 10 at the 54th annual meeting of the American Society of Hematology, the research team—led by DF/CHCC's Raffaele Renella, MD, PhD, Stuart H. Orkin, MD, and David A. Williams, MD—announced that they had demonstrated in an animal model the feasibility of activating a form of hemoglobin unaffected by the sickle cell mutation.

The study was included as part of the meeting's Best of ASH session on Dec. 11. At this session, the meeting's scientific co-chairs present what they consider to be the best abstracts of the 4,000-plus presented at the conference.

"This work builds on the transformative basic research discovery of the role of BCL11A in maintaining fetal hemoglobin silencing by the Orkin laboratory with a near-term goal of curing sickle cell disease using gene therapy," said Williams, chief of the Division of Hematology/Oncology at DF/CHCC and senior author on the abstract. "We have had important recent successes in applying this type of gene therapy in treating several other genetic diseases at Boston Children's Hospital."

The team's work builds on previous research, published by Orkin's laboratory, suggesting that strategies targeting a molecular switch called BCL11A have the potential to correct sickle cell disease.

First described over 100 years ago, sickle cell disease (or sickle cell anemia) is an inherited blood disease caused by a single mutation in one of the components of hemoglobin, the oxygen-carrying protein in red blood cells. The mutation reduces the protein's ability to carry oxygen and forces the cells to curve into a distinctive crescent or sickle shape.

Our bodies can actually manufacture two forms of hemoglobin: the adult form susceptible to the sickle cell mutation, and a fetal form that is largely produced during development and for a short time after birth. BCL11A is a transcription factor that facilitates that shift in hemoglobin production. Fetal hemoglobin expression significantly reduces the symptoms and complications of sickle cell disease because it prevents the intracellular abnormalities caused by the sickle mutation.

In their abstract, Renella, Orkin, Williams and their colleagues reported on their efforts to develop a combined lentiviral gene transfer/RNA interference approach capable of turning down BCL11A in vitro in human and mouse cells and in vivo in a mouse bone-marrow transplant model. Among their findings, the researchers documented a five- to 20-fold increase in fetal hemoglobin production in treated mice.

The team is quick to note that they have not yet attempted to correct disease in a model of sickle cell using this approach. Such efforts would be carried out in future studies.

"There are many approaches to sickle cell disease, and while we've shown we can develop viral vectors, knock down BCL11A, and induce fetal hemoglobin production, it's all been done in non-disease model systems," cautioned Renella, a fellow in the Williams laboratory at DF/CHCC. "What we don't yet know is whether we can stop production of sickled cells in a sickle cell system. Further experiments will show us if that is possible."

The study was supported by the National Heart, Lung and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases and the Howard Hughes Medical Institute.

Dana-Farber/Children's Hospital Cancer Center
Since 1947, Boston Children's Hospital and Dana-Farber Cancer Institute have provided comprehensive care for children and adolescents with cancer through Dana-Farber/Children's Hospital Cancer Center. The two Harvard Medical School affiliates share a clinical staff that delivers inpatient care at Boston Children's and outpatient therapies at Dana-Farber's Jimmy Fund Clinic. The Boston Children's inpatient pediatric cancer service has 33 beds, including 13 designated for stem cell transplant patients.

Boston Children's is also the site of DF/CHCC inpatient clinical translational research in pediatric malignancies and has long supported the operation of an effective and productive stem cell transplant service. It has a long history of investment in and support of both clinical and basic cancer research, with more than $7.3 million in National Cancer Institute research support and 47,000 square feet of space devoted to cancer research. It is a recognized center of excellence in angiogenesis, cellular/molecular immunology, cancer genetics, and molecular signaling research.

Contacts:
Rob Graham
Boston Children's Hospital
617-919-3110
Rob.Graham@childrens.harvard.edu

Teresa Herbert
Dana-Farber Cancer Institute
617-632-4090
Teresa_herbert@dfci.harvard.edu


'/>"/>
SOURCE Boston Children's Hospital
Copyright©2012 PR Newswire.
All rights reserved

Related biology news :

1. New coronavirus has many potential hosts, could pass from animals to humans repeatedly
2. ALS TDI and Gladstone Institutes collaborate to discover potential ALS treatments
3. Fracking in Michigan: U-M researchers study potential impact on health, environment, economy
4. Potentially toxic flame retardants found in many US couches
5. Surface analysis techniques for advanced materials enhance Mazovias research potential
6. An international competition reaffirms the potential of bioinformatics in the diagnosis of disease
7. Scripps Research Institute team identifies a potential cause of Parkinsons disease
8. Researchers tap into CO2 storage potential of mine waste
9. Stem cell scientists discover potential way to expand cells for use with patients
10. King Richard III search in new phase after discovery has potential to rewrite history
11. New potential targets discovered for treating squamous cell lung cancers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC , ... announced the opening of an IoT Center of Excellence ... and expand the development of embedded iris biometric applications. ... level of convenience and security with unmatched biometric accuracy, ... identity aside from DNA. EyeLock,s platform uses video technology ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/26/2016)... LONDON , April 26, 2016 ... EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... a partnership to integrate the Onegini mobile security ... (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The ... enhanced security to access and transact across channels. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
(Date:6/23/2016)... -- On Wednesday, June 22, 2016, the NASDAQ ... Dow Jones Industrial Average edged 0.27% lower to finish at ... Stock-Callers.com has initiated coverage on the following equities: Infinity Pharmaceuticals ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ... Learn more about these stocks by accessing their free trade ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a ... designed, tuned and optimized exclusively for Okuma CNC machining centers at The International ... a collaboration among several companies with expertise in toolholding, cutting tools, machining dynamics ...
(Date:6/22/2016)... DIEGO , June 22, 2016 ... that will allow them to produce up to ... from one lot within one week. These high-quality, ... time laboriously preparing cells and spend more time ... possible through a proprietary, high-volume manufacturing process that ...
Breaking Biology Technology: