Navigation Links
'Policing' stops cheaters from dominating groups of cooperative bacteria
Date:5/26/2011

For cooperation to persist in the often violently competitive realm of bacteria, cheaters must be kept in line.

Two Indiana University Bloomington biologists have learned that in one bacterium, at least, bacterial cooperators can evolve to "police" the cheaters and arrest their bids for dominance.

"Even simple organisms such as bacteria can evolve to suppress social cheaters," said Gregory Velicer, who with Ph.D. student Pauline Manhes has reported the policing behavior in the Proceedings of the National Academy of Sciences.

Their laboratory experiments suggest that cooperative bacteria in nature may evolve to behave in ways that thwart the increase of selfish cheaters. In complex multicellular organisms such as ourselves, cancer cells can be viewed as cheaters that proliferate at the expense of the larger organism. If cancer cells are not successfully "policed" by our healthy cells (and/or medical intervention), the results can be catastrophic. Similarly, the long-term fate of cooperator lineages can be threatened by neighboring cheater lineages in the same social group unless the cooperators are able to migrate away from cheaters or evolve to suppress them.

"Mechanisms that prevent, mitigate or eliminate social conflict among interacting individuals are required for cooperation or multicellularity to succeed," Velicer said. "Policing is one such mechanism. This study shows that bacteria have the potential to evolve behaviors that eliminate fitness advantages derived from cheating within social groups."

Myxococcus xanthus is a predatory bacterium that swarms through soil, killing and eating other microbes by secreting toxic and digestive compounds. When food runs out, cells aggregate and exchange chemical signals to form cooperative, multi-cellular fruiting bodies. Some of the cells create the fruiting body's structure. Other cells are destined to become hardy spores that can survive starvation and other difficult conditions.

In mixed fruiting bodies containing both "cheater" and "cooperator" strains, the cheater strain utilized by Manhes and Velicer does not contribute a social signal required for making spores, whereas the cooperative strain does. Defection from making a social contribution allows cheater cells to "steal" the social signal from cooperators and convert a larger proportion of their cells into spores than do cooperators. Thus, the cheater strain loses to the cooperator strain when they develop in separate groups, but the cheater wins in mixed groups where they directly interact with cooperators.

The scientists mixed cooperative and cheating strains of M. xanthus and allowed cooperator lineages -- but not the cheater -- to evolve under starvation conditions in which cooperative construction of fruiting bodies is important for survival. They then watched to see how replicate lineages descended from the cooperator strain would evolve while repeatedly encountering the same non-evolving cheater over many consecutive cycles of fruiting body development.

Both strains were exposed to an antibiotic during a growth phase after each cycle of development. Cheater cells are sensitive to the antibiotic and were killed off, whereas cooperator cells were resistant to the antibiotic and their populations could continue growing and evolving. The same non-evolving cheater strain was reintroduced to the evolving cooperator lineages at the beginning of each cycle of fruiting body development and removed at the end of each cycle. The evolution experiment was allowed to run for 20 cycles of development.

"We tested whether cooperators adapted to the presence of a cheater mainly by changing their social interactions with that cheater or by improving their spore production in a way that is independent of their social environment," Manhes said. "We found that the lineages descended from the cooperative ancestor evolved novel interactions with the cheater that improved their fitness."

The policing behavior was described as "selfish" because suppression of the cheaters directly benefited the evolved populations themselves rather than being self-sacrificial for the benefit of others. That being said, the selfish police actually do strongly benefit cooperator cells in at least one social context. In mixed groups that include three players -- the evolved cells, the cheater and the ancestral cooperator -- the ancestor produced far more spores than it did when it was mixed with only the cheater.

The evolving populations might have gained the ability to suppress cheaters by a variety of mechanisms, Velicer said.

For example, the descendants of the ancestral cooperator might have evolved a general anti-competitor trait that generically harms a variety of potential competitors to a similar degree, but this did not occur. Rather, the cooperator lineages evolved behaviors that are particularly harmful to the non-evolving cheater. "We would like to investigate the molecular basis of cheater suppression," Velicer said, "in particular whether it is due to the positive production of a compound that is uniquely detrimental to the cheater or some other mechanism."

The scientists competed the strains that evolved to deal with the cheater against their cooperative ancestor, both with the cheater present in the same group and without the cheater. They found that most evolved populations strongly outcompeted their ancestor only when the cheater was present. This result showed that much of the adaptation that took place during the evolution experiment was a specific evolutionary response to the presence of cheater cells.

In an intriguing reversal of fate, some of the replicate populations that evolved from the cooperative ancestor actually became cheaters themselves, but of a new kind. These new cheaters differed from the non-evolving cheater (the one that was mixed with the evolving populations during every round of development) and in some cases could socially exploit both the cooperative ancestor and the non-evolving cheater itself.

This study may cast a shadow on recent proposals that cheaters might be used to thwart infections of bacteria that cooperate with each other to cause disease in humans. The basic idea of such proposals is to introduce cheaters that will disrupt the social cohesion of infecting bacterial populations. However, just as bacteria readily evolve resistance to antibiotics, cooperative bacteria that infect humans or animals may evolve to beat the cheats.


'/>"/>

Contact: Steve Chaplin
stjchap@indiana.edu
812-856-1896
Indiana University
Source:Eurekalert  

Related biology news :

1. Researchers find drug that stops progression of Parkinsons disease in mice
2. Novel on-off switch mechanism stops cancer in its tracks
3. Natural compound stops retinopathy
4. Social separation stops flu spread, but must be started soon
5. Claudin 11 stops the leaks in neuronal myelin sheaths
6. Purdue researcher invents molecule that stops SARS
7. DFG establishes 18 new research training groups
8. Vitamin E may increase the life expectancy of restricted groups of men
9. DFG establishes 10 new research training groups
10. Family ties bind desert lizards in social groups
11. From the heart: How cells divide to form different but related muscle groups
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Policing' stops cheaters from dominating groups of cooperative bacteria
(Date:12/12/2016)...  Researchers at Trinity College, Dublin, are opening ... the material with Silly Putty. The mixture (known as ... to sense pulse, blood pressure, respiration, and even ... The research team,s findings were published Thursday ... http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/7/2016)... -- BioCatch , the global leader in behavioral biometrics, ... grew to over 40 granted and pending patents. ... , , The Company,s IP ... System, Device, and Method Estimating Force Applied to a Touch Surface, ... costly hardware components needed to estimate the force and pressure applied to ...
(Date:12/6/2016)... -- Valencell , the leading innovator in performance ... third consecutive year of triple digit growth for its ... a 360 percent increase in companies who have acquired ... by sales of its wrist and ear Benchmark™ sensor ... for hearables for fitness and healthcare applications. ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... The report "Direct-Fed Microbials Market by Type (Lactic Acid Bacteria and Bacillus), Livestock (Pork/Swine, ... Forecast to 2022", published by MarketsandMarkets, the global market is estimated to be ... Million by 2022, at a CAGR of 6.96% from 2016. ... ... Logo ...
(Date:1/11/2017)... , ... January 11, 2017 , ... ... society for optics and photonics , are commending the U.S. Congress and President ... signing Friday by the President of the American Innovation and Competitiveness Act (AICA). ...
(Date:1/11/2017)... ... January 11, 2017 , ... ... cellular response analysis platform to measure the proteomic function of individual cells in ... Innovation Research (SBIR) grant from the National Institute on Aging of the National ...
(Date:1/11/2017)... England , PITTSBURGH and BENGALURU, ... -- Mylan N.V. (NASDAQ, TASE: MYL) and Biocon Ltd. (BSE ... Food and Drug Administration (FDA) has accepted Mylan,s biologics ... for filing through the 351(k) pathway. This product is ... to treat certain HER2-positive breast cancers. The anticipated FDA ...
Breaking Biology Technology: