Navigation Links
Poisonous tears
Date:5/16/2011

This release is available in German.

For years Professor Leo von Hemmen, a biophysicist at the TU Muenchen, and Professor Bruce Young, a biologist at the University of Massachusetts Lowell, have been researching the sense of hearing in snakes. While discussing the toxicity of their snakes, it dawned on them that only few snakes inject their venom into their victims' bodies using hollow poison fangs. Yet, even though the vast majority of poisonous reptiles lack hollow fangs, they are effective predators.

Only around one seventh of all poisonous snakes, like the rattlesnake, rely on the trick with the hollow poison fang. The vast majority has developed another system. A typical representative of this class is the mangrove pit viper, Boiga dendrophila. Using its twin fangs, it punches holes into the skin of its victims. The venom flows into the wound between the teeth and the tissue. But there is an even easier way: many poison fangs simply have a groove the venom flows along to enter the wound.

The researchers asked themselves how this simple method could be so successful from an evolutionary perspective, considering that bird feathers, for example, should be able to easily brush away any venom flowing along an open groove. To get to the bottom of this mystery, they investigated the surface tension and viscosity of various snake venoms. The measurements showed that snake venom is amazingly viscous.

The surface tension is high, about the same as that of water. As a result, the surface energy pulls the drops into the fang grooves, where they then spread out. In the course of evolution, snakes have adapted to their respective preferred prey using a combination of optimal fang groove geometry and venom viscosity. Snakes that prey on birds developed deeper grooves to keep the viscous venom from being brushed away by bird feathers.

The researchers also found an answer to the question of how snakes manage to ferry the venom well under the skin of their prey. After all, only there can it unfold its deadly effect. Here too, snakes developed a trick in the course of evolution: When a snake attacks, the fang grooves and the surrounding tissue form a canal. Just like blotting paper, the tissue sucks the venom through this canal. And snake venom has a very special property to facilitate this effect: Just like ketchup, which becomes significantly more fluid upon shaking, the sheer forces that arise from the suction cause the venom to become less viscous, allowing it to flow through the canal quickly as a result of the surface tension.

Scientists refer to substances with these characteristics as non-Newtonian fluids. These have a very practical consequence for snakes: As long as there is no prey in sight, the venom in the groove remains viscous and sticky. When the snake strikes, the poisonous "tears" flow along the groove just like wine along a glass and into the wound, where the venom takes its lethal effect.


'/>"/>

Contact: Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
Technische Universitaet Muenchen
Source:Eurekalert  

Related biology news :

1. Poisonous prehistoric raptor discovered by research team from Kansas and China
2. Poisonous Poisson
3. Rotator cuff tears: Are they all in the family?
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Poisonous tears
(Date:3/22/2016)... 22, 2016 According ... Market for Consumer Industry by Type (Image, Motion, ... (Communication & IT, Entertainment, Home Appliances, & ... to 2022", published by MarketsandMarkets, the market ... reach USD 26.76 Billion by 2022, at ...
(Date:3/18/2016)... LONDON , March 18, 2016 ... Established Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical ... & security companies in the border security market and ... and Europe has led ... your companies improved success. --> defence & ...
(Date:3/15/2016)... JERUSALEM , March 15, 2016 ... Jerusalem , the technology-transfer company of the Hebrew University, ... developer of remote sensing technology of various human biological ... funding, raising $2.0 million from private investors. ... technology, based on the detection of electromagnetic emissions from ...
Breaking Biology News(10 mins):
(Date:5/5/2016)... ... May 05, 2016 , ... American Process, Inc. ... patents, U.S. Patent Nos. 9,322,133 and 9,322,134, to API and its affiliated companies ... well as hydrophobic nanocellulose compositions. In addition to these patents and U.S. ...
(Date:5/5/2016)... (PRWEB) , ... May 05, 2016 , ... ... the previously announced identification of its first three targets, it has identified a ... Amyloid beta (Aß), implicated in the development and progression of Alzheimer’s disease (AD). ...
(Date:5/4/2016)... ... May 04, 2016 , ... Looking ... LaJollaCooks4u, San Diego’s premiere hands-on cooking experience. Offering everything from gourmet cooking classes ... experience she won’t forget. , Guests that visit LaJollaCooks4u share an experience unlike ...
(Date:5/4/2016)... , May 4, 2016  Bayer today ... oncology compound Stivarga ® (regorafenib) tablets for ... (HCC) has met its primary endpoint of a ... called RESORCE, evaluated the efficacy and safety of ... progressed after treatment with sorafenib. The safety and ...
Breaking Biology Technology: