Navigation Links
Plugging in molecular wires
Date:2/12/2009

This release is available in German.

Plants, algae, and cyanobacteria (blue-green algae) are masters of everything to do with solar energy because they are able to almost completely transform captured sunlight into chemical energy. This is in part because the electrons set free by the photons are transported out of the "light receptor" 1:1 to be used as the driving force for chemical reactions. Japanese researchers have now developed a new process to capture light energy with nearly equal efficiency. As they report in the journal Angewandte Chemie, they "plug" a molecular "wire" directly into a biological photosynthetic system to efficiently conduct the free electrons to a gold electrode.

The efficiency of photovoltaic energy conversion is of critical significance for the practical application of solar installations. Theoretically, every photon absorbed should release one electron. Whereas modern solar cells are far from achieving high efficiency, natural photosynthetic systems achieve nearly 100 % quantum yield. To improve the efficiency of synthetic systems, experiments were attempted in which biological light-capturing units were deposited onto electrodes as thin films. However, the transfer of electrons from the light-capturing layer into the circuit in this type of system is so inefficient that most of the electrons don't even make it to the target electrode.

The secret to the success of natural photosystems is the perfect fit of the individual components. The molecules fit precisely together like plugs and sockets and can pass electrons on directly and nearly without loss. The new approach taken by the Japanese researchers cleverly connects photosystem I (PSI) from the blue-green algae Thermosynechococcus elongatus with a synthetic apparatus. An important component of the electron transmission sequence of PSI is vitamin K1. The researchers removed the vitamin K1 from the PSI protein complex and replaced it with a synthetic analogue. This consists of three parts: 1) The same molecular "plug" with which vitamin K1 is bound to the protein complex (napthoquinone group) is used to "plug in" the synthetic binding component to PSI; 2) a molecular "wire" (hydrocarbon chain) with the same length as in vitamin K1 ensures that the binding component protrudes from the protein complex; and 3) at the other end of the wire is an additional "plug" (viologen group) that anchors the ensemble to a specially coated gold electrode. Electrons released by irradiation of PSI and transmitted along the wire are very efficiently transmitted to the gold electrode by the viologen group.

It may be possible to use this new strategy to integrate other biocomponents into synthetic systems.


'/>"/>

Contact: Nao Terasaki
nao-terasaki@aist.go.jp
Wiley-Blackwell
Source:Eurekalert  

Related biology news :

1. New molecular regulators of hyperthyroidism and goiter
2. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
3. UC health news: molecular pathway may predict chemotherapy effectiveness
4. New molecular clock from LLNL and CDC indicates smallpox evolved earlier than believed
5. Story ideas from Molecular & Cellular Proteomics
6. Lets talk -- new paradigms in the research of the biomolecular composition of water
7. Scientists unveil structure of molecular target of many drugs
8. Potential new therapeutic molecular target to fight cancer
9. NIH selects LIAI for major study on allergy molecular causes and possible treatments
10. Pennsylvania Hospital surgeon receives grant to develop molecular cardiac surgery
11. Leading cause of death in preemies might be controlled by resetting a molecular switch
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Plugging in molecular wires
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
(Date:3/22/2016)... OTTAWA, Ontario , PROVO ... 2016 Newborn Screening Ontario (NSO), which operates ... for molecular testing, and Tute Genomics and ... process management technology respectively, today announced the launch of ... new next-generation sequencing (NGS) testing panel. ...
(Date:3/18/2016)... 2016 --> --> ... Manned & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance & ... the border security market and the continuing migration crisis in ... Europe has led visiongain to publish this unique ... --> defence & security companies in the border ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, ... launch of their brand, UP4™ Probiotics, into Target stores nationwide. The company, which ... to add Target to its list of well-respected retailers. This list includes such ...
(Date:6/23/2016)... Houston Methodist Willowbrook Hospital has signed ... to serve as their official health care provider. ... will provide sponsorship support, athletic training services, and ... volunteers, athletes and families. "We are ... and to bring Houston Methodist quality services and ...
(Date:6/23/2016)... --  EpiBiome , a precision microbiome engineering company, today ... from Silicon Valley Bank (SVB). The financing will allow ... drug development efforts, as well as purchase additional lab ... been an incredible strategic partner to us – one ... provide," said Dr. Aeron Tynes Hammack , EpiBiome,s ...
(Date:6/23/2016)... June 23, 2016 Apellis Pharmaceuticals, Inc. ... clinical trials of its complement C3 inhibitor, APL-2. ... multiple ascending dose studies designed to assess the ... subcutaneous injection in healthy adult volunteers. ... as a single dose (ranging from 45 to ...
Breaking Biology Technology: