Navigation Links
Plugging in molecular wires
Date:2/12/2009

This release is available in German.

Plants, algae, and cyanobacteria (blue-green algae) are masters of everything to do with solar energy because they are able to almost completely transform captured sunlight into chemical energy. This is in part because the electrons set free by the photons are transported out of the "light receptor" 1:1 to be used as the driving force for chemical reactions. Japanese researchers have now developed a new process to capture light energy with nearly equal efficiency. As they report in the journal Angewandte Chemie, they "plug" a molecular "wire" directly into a biological photosynthetic system to efficiently conduct the free electrons to a gold electrode.

The efficiency of photovoltaic energy conversion is of critical significance for the practical application of solar installations. Theoretically, every photon absorbed should release one electron. Whereas modern solar cells are far from achieving high efficiency, natural photosynthetic systems achieve nearly 100 % quantum yield. To improve the efficiency of synthetic systems, experiments were attempted in which biological light-capturing units were deposited onto electrodes as thin films. However, the transfer of electrons from the light-capturing layer into the circuit in this type of system is so inefficient that most of the electrons don't even make it to the target electrode.

The secret to the success of natural photosystems is the perfect fit of the individual components. The molecules fit precisely together like plugs and sockets and can pass electrons on directly and nearly without loss. The new approach taken by the Japanese researchers cleverly connects photosystem I (PSI) from the blue-green algae Thermosynechococcus elongatus with a synthetic apparatus. An important component of the electron transmission sequence of PSI is vitamin K1. The researchers removed the vitamin K1 from the PSI protein complex and replaced it with a synthetic analogue. This consists of three parts: 1) The same molecular "plug" with which vitamin K1 is bound to the protein complex (napthoquinone group) is used to "plug in" the synthetic binding component to PSI; 2) a molecular "wire" (hydrocarbon chain) with the same length as in vitamin K1 ensures that the binding component protrudes from the protein complex; and 3) at the other end of the wire is an additional "plug" (viologen group) that anchors the ensemble to a specially coated gold electrode. Electrons released by irradiation of PSI and transmitted along the wire are very efficiently transmitted to the gold electrode by the viologen group.

It may be possible to use this new strategy to integrate other biocomponents into synthetic systems.


'/>"/>

Contact: Nao Terasaki
nao-terasaki@aist.go.jp
Wiley-Blackwell
Source:Eurekalert  

Related biology news :

1. New molecular regulators of hyperthyroidism and goiter
2. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
3. UC health news: molecular pathway may predict chemotherapy effectiveness
4. New molecular clock from LLNL and CDC indicates smallpox evolved earlier than believed
5. Story ideas from Molecular & Cellular Proteomics
6. Lets talk -- new paradigms in the research of the biomolecular composition of water
7. Scientists unveil structure of molecular target of many drugs
8. Potential new therapeutic molecular target to fight cancer
9. NIH selects LIAI for major study on allergy molecular causes and possible treatments
10. Pennsylvania Hospital surgeon receives grant to develop molecular cardiac surgery
11. Leading cause of death in preemies might be controlled by resetting a molecular switch
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Plugging in molecular wires
(Date:6/15/2016)... June 15, 2016 Transparency ... titled "Gesture Recognition Market by Application Market - Global Industry Analysis ... 2024". According to the report, the  global gesture recognition ... 2015 and is estimated to grow at a ... by 2024.  Increasing application of gesture ...
(Date:6/2/2016)... , June 2, 2016 The Department ... has awarded the 44 million US Dollar project, for the ... Vehicle Plates including Personalization, Enrolment, and IT Infrastructure , ... in the production and implementation of Identity Management Solutions. Numerous ... however Decatur was selected for the ...
(Date:5/20/2016)... MINNEAPOLIS , May 20, 2016  VoiceIt ... technology partnership with VoicePass. By working ... user experience.  Because VoiceIt and VoicePass take slightly ... two engines increases both security and usability. ... expressed excitement about this new partnership. ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... , June 23, 2016 A person commits ... the crime scene to track the criminal down. ... U.S. Food and Drug Administration (FDA) uses DNA evidence to ... Sound far-fetched? It,s not. The FDA has ... to support investigations of foodborne illnesses. Put as simply as ...
Breaking Biology Technology: