Navigation Links
Plants that can move inspire new adaptive structures
Date:2/19/2011

ANN ARBOR, Mich.---The Mimosa plant, which folds its leaves when they're touched, is inspiring a new class of adaptive structures designed to twist, bend, stiffen and even heal themselves. University of Michigan researchers are leading their development.

Mechanical engineering professor Kon-Well Wang will present the team's latest work Feb. 19 at the American Association for the Advancement of Science's 2011 Annual Meeting in Washington D.C. He will also speak at a news briefing earlier that day. Wang is the Stephan P. Timoshenko Collegiate Professor of Mechanical Engineering and chair of the Department of Mechanical Engineering.

"This is quite different from other traditional adaptive materials approaches," Wang said. "In general, people use solid-state materials to make adaptive structures. This is really a unique concept inspired by biology."

Researchers at U-M and Penn State University are studying how plants like the Mimosa can change shape, and they're working to replicate the mechanisms in artificial cells. Today, their artificial cells are palm-size and larger. But they're trying to shrink them by building them with microstructures and nanofibers. They're also exploring how to replicate the mechanisms by which plants heal themselves.

"We want to put it all together to create hyper-cellular structures with circulatory networks," Wang said.

The Mimosa is among the plant varieties that exhibit specialized "nastic motions," large movements you can see in real time with the naked eye, said Erik Nielsen, assistant professor in the U-M Department of Molecular, Cellular and Developmental Biology.

The phenomenon is made possible by osmosis, the flow of water in and out of plants' cells. Triggers such as touch cause water to leave certain plant cells, collapsing them. Water enters other cells, expanding them. These microscopic shifts allow the plants to move and change shape on a larger scale.

It's hydraulics, the researchers say.

"We know that plants can deform with large actuation through this pumping action," Wang said. "This and several other characteristics of plant cells and cell walls have inspired us to initiate ideas that could concurrently realize many of the features that we want to achieve for adaptive structures."

Nielsen believes nastic movements might be a good place to start trying to replicate plant motions because they don't require new growth or a reorganization of cells.

"These rapid, nastic motions are based on cells and tissues that are already there," Nielsen said. "It's easy for a plant to build new cells and tissues during growth, but it's not as easy to engineer an object or machine to completely change the way it's organized. We hope studying these motions can inform us about how to make efficient adaptive materials that display some of the same types of flexibility that we see in biological systems."

When this technology matures, Wang said it could enable robots that change shape like elephant trunks or snakes to maneuver under a bridge or through a tunnel, but then turn rigid to grab a hold of something. It also could lead to morphing wings that would allow airplanes to behave more like birds, changing their wing shape and stiffness in response to their environment or the task at hand.


'/>"/>

Contact: Nicole Casal Moore
ncmoore@umich.edu
734-647-7087
University of Michigan
Source:Eurekalert

Related biology news :

1. Plants cloned as seeds
2. 2 new plants discovered in Spain
3. Stem cell transplants help kidney damage
4. Invasive plants can create positive ecological change
5. Different evolutionary paths lead plants and animals to the same crossroads
6. Plants can adapt genetically to survive harsh environments
7. Free radicals in cornea may contribute to Fuchs dystrophy, most common cause of corneal transplants
8. Fast growth, low defense -- plants facing a dilemma
9. Forest Service offers free guide to managing invasive plants
10. UC Davis study shows plants moved downhill, not up, in warming world
11. Gene helps plants use less water without biomass loss
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/31/2017)... Jan. 31, 2017  Spero Therapeutics, LLC, a ... the treatment of bacterial infections, today announced it ... candidates from Pro Bono Bio Ltd (PBB) to ... multi-drug resistant forms of Gram-negative bacteria.   The assets ... Ltd, a PBB group company. "The ...
(Date:1/26/2017)... 2017  Acuity Market Intelligence today released the ... Identity".  Acuity characterizes 2017 as a "breakout" year ... reflects a new understanding of the potential benefits ... digital identity are often perceived as threats to ... Principal of Acuity Market intelligence. "However, taken together ...
(Date:1/24/2017)... 2017  It sounds simple and harmless—an electronic ... vital signs and alerts parents on their smart ... level drops. But pediatric experts argue that such ... no evidence of medical benefits, especially to healthy ... to parents of healthy babies, promising peace of ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... Feb. 23, 2017  Seattle,s upscale Capitol Hill neighborhood, with its ... place for a head lice treatment salon to set up ... Tuscan restaurant and a French bistro on E Madison Ave, ... aren,t just any old lice clinic, we pride ourselves on ... and release some of the stigma associated with lice. Everyone ...
(Date:2/23/2017)... INDIANAPOLIS, Ind. (PRWEB) , ... February 23, 2017 ... ... Commercialization Award during the 12th annual Inventors Recognition Reception at Purdue Research ... annually to a faculty member in recognition of outstanding contributions to, and success ...
(Date:2/23/2017)... DIEGO , Feb. 23, 2017 ... research tools, announced the acquisition of GenWay Biotech ... a comprehensive service and product offering for both ... acquisition will facilitate growth and enhance capabilities for ... antibodies, and ELISA assays will nicely complement ASB,s ...
(Date:2/22/2017)... ... February 22, 2017 , ... Kernel , a ... Systems, LLC (KRS) clinical development program. KRS is a neurotechnology spin-out from ... and clinical applications. The terms of the transaction were not disclosed. , ...
Breaking Biology Technology: