Navigation Links
Plants in mining areas can cure soil affected by contamination in very short time
Date:3/11/2010

When conditions become complicated, there is no choice but to adapt to them. Plants have to do the same. Some of them growing in mining areas have unusual strengths, accustomed as they are to living in a toxic environment and knowing how to deal with this. Based on this capacity to adapt, researcher Ms Lur Epelde used these plants as medicinal herbs for contaminated soils.

The current level of contamination in the soil, caused by human intervention - is highly worrying. Nevertheless, more than the contamination as such, Ms Epelde was more interested in the effect these plants have on the health of the soil. The researcher puts forward phytoremediation as a means for confronting this problem; i.e. treating poor environments with these plants, without the need to excavate soil. Moreover, the idea is based on the microbiological properties of the soil itself to measure this technique: the mass of its microbian community, its activity and its biodiversity. The title of her PhD thesis is Evaluation of the efficiency of metal phytoremediation processes with microbiological indicators of soil health.

Technique adapted to each condition

Ms Epelde investigated, above all, pseudometalophyte plants - which grow in mining environments -, and the reaction they have to metals. To begin with, she linked Lanestosa of the thlaspi caerulescens species with zinc and cadmium. Lanestosa is a traditional mining town in the Encartaciones region near Bilbao and its namesake plant has optimum conditions for continuous phytoextraction (a process for differentiating metal from the rest of the elements). According to the research, it is capable of withstanding great concentrations of metal and also of accumulating considerable quantities of zinc and cadmium in its tissues that are in contact with the air. As with hyperaccumulator species such as this, large-sized plants are also effective. For example, sorghum has great potential for phytoextracting zinc and cadmium.

On the other hand, to phytoextract soils contaminated by lead, Ms Epelde opted for combining plants and chemistry, on the one hand using thistle (a plant of large dimensions) and, on the other, a chelating agent. She tested them with two chelating substances: EDTA and EDDS and concluded that, while EDTA is more effective for phytoextraction and less toxic for thistle plants, EDDS is less toxic for the soil microbian community and biodegrades rapidly.

In highly contaminated soils (zinc, cadmium and lead), Ms Epelde, instead of extraction, opted for stabilisation with grass crops, to this end using lolium perenne (ryegrass) and fertiliser. Particularly effective is cattle purine as it enhances the properties of the mining soils and reduces the toxicity of metals.

Finally, Ms Epelde combined three species of plants with different strategies for tolerance to metals, in order to see how they worked together. The three were thlaspi caerulescens (Alpine pennycress), rumex acetosa (sorrel) and festuca rubra (red fescue). It was shown that this technique has a great future. In fact, the thlaspi caerulescens causes the growth of the other two species and the rumex acetosa extracts more zinc when operating in conjunction with the thlaspi caerulescens.

Microbiological properties as indicator

Ms Epelde has shown that microbiological properties are effective for measuring phytoremediation. Microbiological properties are bioindicators of great value, given their sensitivity, speed of response and comprehensive character.

Helped by this technique, she concluded that the key is phytoremediation plants, rather than phytoremediation itself. Just the presence of these plants improves the health of the soil and, moreover, does so in a very short time, through increase in activity and functionality of the microbian community in the soil. However, more time is needed for the phytoremediation to clean up the contamination left by metals in the soil. In any case, as the most important thing is to recover the health of the soil, the aim is accomplished.


'/>"/>

Contact: Amaia Portugal
a.portugal@elhuyar.com
34-943-363-040
Elhuyar Fundazioa
Source:Eurekalert

Related biology news :

1. Plants discover the benefits of good neighbors in strategy against herbivores
2. Bone marrow cell transplants to benefit those with heart disease
3. DNA sequencing unlocks relationships among flowering plants
4. From carnivorous plants to the medicine cabinet?
5. New material mimics bone to create better biomedical implants
6. Moss helps chart the conquest of land by plants
7. Smart coating opens door to safer hip, knee and dental implants
8. Invasive plants are beneficiaries of climate change in Thoreaus woods
9. Changing flowering times protect tobacco plants against insect herbivory
10. Can modern-day plants trace their New Zealand ancestry?
11. How plants feel the temperature rise
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... CA (PRWEB) , ... June 27, 2016 , ... ... for clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT ... care circle with the physician and clinical trial team. , Using the CONSULT module, ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... 2016 Epic Sciences unveiled a liquid ... to PARP inhibitors by targeting homologous recombination deficiency ... new test has already been incorporated into numerous ... types. Over 230 clinical trials are ... including PARP, ATM, ATR, DNA-PK and WEE-1. Drugs ...
(Date:6/23/2016)... WA (PRWEB) , ... June 23, 2016 , ... ... announces the release of its second eBook, “Clinical Trials Patient Recruitment and Retention ... recruitment and retention in this eBook by providing practical tips, tools, and strategies ...
Breaking Biology Technology: