Navigation Links
Plants display 'molecular amnesia'
Date:12/2/2008

This release is available in French.

Plant researchers from McGill University and the University of California, Berkeley, have announced a major breakthrough in a developmental process called epigenetics. They have demonstrated for the first time the reversal of what is called epigenetic silencing in plants.

The findings are important to develop a better understanding of gene regulation in the continuing quest to breed enhanced crops that produce higher yields, are more resistant to disease and can better tolerate environmental stress all keys to helping improve the world's food supply. But perhaps even more important, the discovery may lead to new insights into how epigenetic processes work in the human body, which could assist in developing new ways of modifying our genetic makeup to help us avoid such diseases as cancer.

Although nearly every cell in our body is genetically identical, the researchers explained, each cell type expresses a distinct set of genes. Changes to the proteins around which DNA is wound are called "epigenetic" modifications, because they alter patterns of this gene expression without changing the actual DNA sequence. However, like changes in DNA sequence, epigenetic modifications can be passed on from parent cell to daughter cell, ensuring each cell line has the proper characteristics consistently over many generations.

This process must be repeated each generation, and there is good evidence in animals that, during early development, there is a wave of epigenetic reprogramming that effectively "resets" this system. Some genes, it seems, must be more actively reset than others. And genes that do the same thing in every cell, regardless of tissue type, may not have to be reset at all.

One kind of gene is quite distinct from all of the others, because it is nearly always epigenetically inactivated. These are the genes carried by transposons, or "jumping genes." Transposons are mutagens, genes that can modify their host cell in different ways, and lead to a predisposition to cancer, for example.

The researchers' experiments with corn technically known as "maize" suggest the propensity to maintain epigenetic states can vary depending on the position of the transposons within the genome.

Many organisms, from worms to humans to plants, have learned to tame transposons by epigentically "silencing" them: if they can't express their genes they can't jump. If they can't jump for long enough, their DNA sequence slowly accumulates errors, and they become molecular fossils. Most transposons in most organisms are silenced in this way, but some remain quite active.

In previous studies from the laboratory of two of the article's authors, UC Berkeley professors Damon Lisch and Michael Freeling, with the support of the National Science Foundation at UC Berkeley, epigenetic silencing was triggered in maize. Once triggered, the maize plant "remembers," and keeps the transposon "silenced" generation after generation, even after the trigger is lost.

"However, we have found that at some positions in the genome, this is not the case. At these positions, although the trigger works fine, and the transposon is silenced, once the trigger is lost, the transposon reawakens," said Jaswinder Singh, a professor in the Plant Sciences Department at McGill University, and lead author of the new article. The study, "A Position Effect on the Heritability of Epigenetic Silencing," was published in October in the journal PLoS Genetics.

This "molecular amnesia" has never before been documented in plants and no one has seen it associated with a particular position in the genome of any species before. These data suggest the epigenetic landscape of plant genomes may be more subtle and interesting than previously thought, with the ability to remember epigenetic silencing varying depending on position.

"This may relate to the degree to which a given gene or group of genes must be reprogrammed each generation," Singh said. "We can now use transposons to probe for variations in the epigenetic landscape of the maize genome. It may turn out that forgetting can be as important as remembering. Our findings suggest that erasure of heritable information may be an important component of epigenetic machinery."


'/>"/>

Contact: Mark Shainblum
mark.shainblum@mcgill.ca
514-398-2189
McGill University
Source:Eurekalert

Related biology news :

1. Layered approach may yield stronger, more successful bone implants
2. Clever plants chat over their own network
3. Plants can be used to study how and why people respond differently to drugs
4. Book on weeds and invasive plants discusses how to manage them using ecological approaches
5. A greenhouse in order to study the impact of climate change on plants
6. Agent that triggers immune response in plants is uncovered
7. Scientists ramp up ability of poplar plants to disarm toxic pollutants
8. A new baseline of invasive plants in Isabela
9. Hungry microbes share out the carbon in the roots of plants
10. Scientists warn that species extinction could reduce productivity of plants on Earth by half
11. Cell transplants may improve severe urinary incontinence
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... DALLAS , May 16, 2017   ... for health organizations, and MD EMR Systems ... certified development partner for GE, have established a ... Patient Portal product and the GE Centricity™ products, ... Centricity EMR. These new integrations ...
(Date:4/24/2017)... -- Janice Kephart , former 9/11 Commission ... LLP (IdSP) , today issues the following statement: ... 6, 2017 Executive Order: Protecting the Nation ... instilled with greater confidence, enabling the reactivation of ... are suspended by until at least July 2017). ...
(Date:4/18/2017)... Inc., a global expert in SoC-based imaging and computing solutions, has ... features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® ... be showcased during the upcoming Medtec Japan at Tokyo Big Sight ... Las Vegas Convention Center April 24-27. ... Click here for an image of the ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced the ... NIH to develop RealSeq®-SC (Single Cell), expected to be ... small RNAs (including microRNAs) from single cells using NGS ... the need to accelerate development of approaches to analyze ... "New techniques for measuring levels of mRNAs ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board ... Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, has been selected ... member of the winning team for the 2015 Breakthrough Prize in Fundamental physics for ...
(Date:10/7/2017)... 6, 2017  The 2017 Nobel Prize in ... Jacques Dubochet, Joachim Frank and ... cryo-electron microscopy (cryo-EM) have helped to broaden ... biology community. The winners worked with systems manufactured ... produce highly resolved, three-dimensional images of protein structures ...
Breaking Biology Technology: