Navigation Links
Plant seeds protect their genetic material against dehydration
Date:12/2/2011

This release is available in German.

Plant seeds represent a special biological system: They remain in a dormant state with a significantly reduced metabolism and are thus able to withstand harsh environmental conditions for extended periods. The water content of maturing seeds is lower than ten percent. Researchers from the Max Planck Institute for Plant Breeding Research in Cologne have now discovered that the genetic material in seeds becomes more compact and the nuclei of the seed cells contract when the seeds begin to mature. The seeds probably protect their genetic material against dehydration in this way.

Plants prepare for changing environmental conditions in the best possible way by developing dormant seeds. Seeds that mature in autumn, for example, have no problem surviving the harsh conditions of winter. And when the seeds encounter more pleasant external conditions in spring, they germinate and reboot their metabolism, which has been running at a low speed. In archaeological excavations, seeds have even been found that had survived for several thousand years and were still able to germinate.

Dry seeds represent a transitional stage between embryonic and seedling stages. During developmental transitions, the genes that control the new state must be activated while the genes for the "old" stage are silenced. The genes in the cell nucleus are surrounded by proteins. This complex the chromatin can be tightly or loosely packed. The degree of compactness of the chromatin regulates the activity of the genes: the more "open" the chromatin, the better the genes can be read.

It was not known up to now whether the reduced metabolic activity or low water content of seeds was linked with changes in the chromatin. The research team working with Wim Soppe from the Max Planck Institute for Plant Breeding Research has now shown in studies on the thale cress that the cell nuclei clearly contract during seed maturation and the chromatin compacts as part of this process. Both processes are reversed during germination. "The size of the nucleus is independent of the state of dormancy of Arabidopsis thaliana seeds," says Soppe. Instead, the reduction of the nucleus is an active process, the function of which is to increase resistance to dehydration. Again, the condensation of the chromatin arises independently of the changes in the nucleus.

Thanks to the discoveries of the Cologne-based researchers it may be possible to protect other organisms against dehydration, as the mechanisms that regulate the organisation of the chromatin have undergone little or no change over the course of evolution.


'/>"/>

Contact: Wim Soppe
soppe@mpipz.mpg.de
49-221-506-2470
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. NASA satellite confirms sharp decline in pollution from US coal power plants
2. Metabolic defects in mice corrected with transplanted embryonic neurons
3. Big boost to plant research
4. Herbicide may affect plants thought to be resistant
5. Bat plant could give some cancers a devil of a time
6. UGA discovery changes how scientists think about plant cell wall formation
7. Planting depths effect on container-grown trees
8. Genome sequence sheds new light on how plants evolved nitrogen-fixing symbioses
9. Toward more cost-effective production of biofuels from plant lignocellulosic biomass
10. Good preparation is key -- even for plant cells and symbiotic fungi
11. Ultrathin flexible brain implant offers unique look at seizures in NIH-funded research
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Plant seeds protect their genetic material against dehydration
(Date:4/11/2017)... -- NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" ... of independent Directors Mr. Robin D. Richards and ... furthering the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer ... guidance and benefiting from their considerable expertise as we move ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
(Date:4/5/2017)... KEY FINDINGS The global market ... CAGR of 25.76% during the forecast period of 2017-2025. ... for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is segmented ... The stem cell market of the product is segmented ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... The ... endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. ... is transformative for performing systematic gain-of-function studies. , This complement to loss-of-function ...
(Date:10/11/2017)... HILLS, Calif. , Oct. 11, 2017  SkylineDx today ... (ICR) and University of Leeds ... risk-stratify patients with multiple myeloma (MM), in a multi-centric Phase ... University of Leeds is the sponsor ... and ICR will perform the testing services to include high-risk ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it ... Nanoparticle), a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... optimization firm for the life sciences and healthcare industries, announces a presentation by ... Francisco. , The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present ...
Breaking Biology Technology: