Navigation Links
Plant scientists unravel a molecular switch to stimulate leaf growth
Date:1/24/2014

Ghent 22 January 2014. Mechanisms that determine the size of plants have fascinated plant scientists of all times, however they are far from understood. An international research team led by plant scientists from VIB and Ghent University report an important breakthrough in the scientific journal The Plant Cell. They identified a protein complex that controls the transition from cell division to cell specialization. By extending the activity of the complex during leaf growth, more cells divide, giving rise to larger leaves. These insights can now be used to guide plant breeding initiatives towards higher plant productivity.

More dividing cells, larger leaves

Cell division is essential for growth and development of all multicellular organisms. In plants, leaf growth consists of two different phases. A first phase is characterized by intense cell division, which leads to the formation of many new cells. During the second phase, cell division activity declines, the cells elongate and acquire a certain expertise. In a small leaf that just initiated from the stem, almost all cells are in the active division phase. Later on, when the leaf matures, cells at the top of the leaf switch to the specialization phase. The more time cells stay in the first phase, the more cells are being formed and the bigger the ultimate leaf size will be. It was already known that the protein ANGUSTIFOLIA3 (AN3) fulfils an important role in determining the timing and activity of cell division in the leaf. However, the precise mode of action of AN3 was not yet understood.

State-of-the-art techniques

To unravel a biological process on a molecular level, scientists typically develop plants in which genes are switched on or off. Studying the effect of these "aberrant" situations on plant growth can in some cases resolve the function of these genes. However, this approach often is like finding a needle in a haystack. Plant scientists of VIB and Ghent University therefore used various state-of-the-art techniques to study the effect of the "aberrant" molecular situation on all genes and all proteins at once. As such, the researchers could elucidate the function of AN3 in the model plant Arabidopsis.

Unpacking DNA to switch on gene activity

All cells of a particular plant contain the same genetic information, which is stored in their DNA. DNA is packed in a condensed structure, the chromatin. When certain genes need to be activated, the chromatin will be unpacked to make specific DNA regions accessible. This process is mediated by so-called "chromatin remodeling" complexes. An international team of scientists led by Dirk Inz of VIB and Ghent University demonstrated that AN3 functions as part of a chromatin remodeling complex. More precisely, AN3 recruits the chromatin remodeling complex towards specific DNA regions that harbor cell division genes. As long as AN3 is active and keeps recruiting the chromatin remodeling complex, cells retain their division activity, resulting in plant organs with increased size. The AN3 protein complex regulates the length of the cell division phase in the leaf and hence the transition from cell division towards cell specialization. This research was performed in collaboration with the University of Pennsylvania (USA), the French "Institut de Biologie des Plantes", the Polish University of Warsaw and the Polish Academy of Sciences. The obtained insights can now be used to orchestrate plant breeding activities more efficiently, for example towards higher plant productivity.


'/>"/>

Contact: Kris Van der Beken
kris.vanderbeken@vib.be
32-924-46611
VIB (the Flanders Institute for Biotechnology)
Source:Eurekalert

Related biology news :

1. The future of plant science - a technology perspective
2. The future of plant science a technology perspective
3. Bone marrow transplant arrests symptoms in model of Rett syndrome
4. American Society of Plant Biologists honors early career women scientists
5. Not just for the birds: Man-made noise has ripple effects on plants, too
6. Plant DNA speaks English, identifies new species
7. Human noise has ripple effects on plants
8. New databases harvest a rich bounty of information on crop plant metabolism
9. Plant research reveals new role for gene silencing protein
10. Plants mimic scent of pollinating beetles
11. Stomata development in plants unraveled -- a valuable discovery for environmental research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com ... just published the overview results from the Q1 wave ... the recent wave was consumers, receptivity to a program ... data with a health insurance company. "We ... to share," says Michael LaColla , CEO of ...
(Date:5/3/2016)... 3, 2016  Neurotechnology, a provider of high-precision ... Automated Biometric Identification System (ABIS) , a complete ... MegaMatcher ABIS can process multiple complex biometric transactions ... of fingerprint, face or iris biometrics. It leverages ... and MegaMatcher Accelerator , which have been ...
(Date:4/28/2016)... -- First quarter 2016:   , Revenues ... first quarter of 2015 The gross margin was 49% ... and the operating margin was 40% (-13) Earnings per ... from operations was SEK 249.9 M (21.2) , Outlook ... 7,000-8,500 M. The operating margin for 2016 is estimated ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or ... its major shareholders, Clean Technology Fund I, LP and ... based venture capital funds which together hold ... a fully diluted, as converted basis), that they have ... entire equity holdings in Biorem to TUS Holdings Co. ...
(Date:6/27/2016)... ... 2016 , ... Parallel 6 , the leading software as a service ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication ... , Using the CONSULT module, patients and physicians can schedule a face to face ...
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
Breaking Biology Technology: