Navigation Links
Plant immunity discovery boosts chances of disease-resistant crops

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have opened up the black box of plant immune system genetics, boosting our ability to produce disease- and pest-resistant crops in the future. The research is published this evening (28 July) in the journal Science.

An international consortium of researchers, including Professor Jim Beynon at the University of Warwick, has used a systems biology approach to uncover a huge network of genes that all play a part in defending plants against attacks from pests and diseases a discovery that will make it possible to explore new avenues for crop improvement and in doing so ensure future food security.

Professor Beynon said "Plants have a basic defence system to keep out potentially dangerous organisms. Unfortunately some of these organisms have, over time, evolved the ability to overcome plant defences and so plant breeders are always looking for new ways to catch them out. Understanding exactly how plant immunity works is key to making developments in this area."

Professor Beynon's team looked at downy mildew as an example of a plant disease. This is caused by mould-like organism called Hyaloperonospora parasitica, which, like many organisms that infect plants, produces proteins that it introduces into the plant to undermine its natural defences.

The team studied almost 100 different so-called effector proteins from Hyaloperonospora parasitica that are known to be involved in overcoming a plant's immune system. They were looking to see how each of these proteins has an effect through interaction with other proteins that are already present in a plant. They found a total of 122 plant proteins from the commonly-studied plant Arabidopsis thaliana that are directly targeted by the proteins from Hyaloperonospora parasitica.

Professor Beynon continued "This shows that there are many more plant proteins involved in immunity than we first thought. By studying the genes that give rise to these proteins we can start to identify key genetic targets for crop improvement."

The study has also identified many complex connections between the plant proteins suggesting that the network of activity is crucial in plant defences.

Professor Beynon concluded "Our discovery suggests that looking for single genes that confer resistance to pests and diseases is not going to be sufficient. Instead, researchers and breeders will have to work together to produce plants with robust networks of genes that can withstand attack."

Professor Douglas Kell, Chief Executive, BBSRC said "Understanding the fundamental bioscience of plants is critical if we are to develop new ways of producing sustainable, safe, and nutritious food for a growing population. This discovery opens up a whole realm of possibilities in research about plant-pathogen interactions. It also points the way to new ways of working in this area; with a complex network operating behind the scenes in plant immunity, there is a clear need to take a systems approach to future research."


Contact: Nancy Mendoza
Biotechnology and Biological Sciences Research Council

Related biology news :

1. Formula discovered for longer plant life
2. Commercial aquatic plants offer cost-effective method for treating wastewater
3. Structures of important plant viruses determined
4. Research about plant viruses could lead to new ways to improve crop yields
5. UC Riverside biochemists devise method for bypassing aluminum toxicity effects in plants
6. Reproducing early and often is the key to rapid evolution in plants
7. MSU scientists find new gene that helps plants beat the heat
8. Diversity of plant-eating fishes may be key to recovery of coral reefs
9. Researchers design artificial cells that could power medical implants
10. Plant-eating predator to fight superweed is not magic bullet
11. When under attack, plants can signal microbial friends for help
Post Your Comments:
(Date:11/9/2015)... DUBLIN , Nov. 09, 2015 /PRNewswire/ ... announced the addition of the "Global ... to their offering. --> ... "Global Law Enforcement Biometrics Market 2015-2019" ... Research and Markets ( ) ...
(Date:11/4/2015)... New York , November 4, 2015 ... to a new market report published by Transparency Market ... Share, Growth, Trends and Forecast 2015 - 2022", the global ... of US$ 30.3 bn by 2022. The market is ... the forecast period from 2015 to 2022. Rising security ...
(Date:10/29/2015)... , Oct. 29, 2015   MedNet Solutions ... the entire spectrum of clinical research, is pleased to ... High Tech Association (MHTA) as one of only three ... the "Software – Small and Growing" category. The Tekne Awards ... who have shown superior technology innovation and leadership. ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... and NEW YORK , November 24, 2015 ... by Bristol-Myers Squibb in a European ... Squibb Company in which the companies will work closely ... and other areas of unmet medical need. The collaboration is ... 5, the latest LSP fund. This is the first investment ...
(Date:11/24/2015)... NEW YORK , Nov. 24, 2015 According ... today than in 2005. This is something that many doctors, ... long time. One questions remains: with fewer PSA tests being ... cancer ? Dr. David Samadi, "Despite ... cancer, the disease remains the second leading cancer cause of ...
(Date:11/23/2015)...   Ceres, Inc . (Nasdaq: CERE ), ... the fiscal year ended August 31, 2015 and provided ... --> During fiscal year 2015, Ceres ... with a better balance of yield, energy and nutrition. ... several leading crop input providers and made significant progress ...
(Date:11/23/2015)... ... 2015 , ... Shimadzu Corporation announces that it has won ... system. The award from R&D magazine recognizes Shimadzu’s Nexera UC system as one ... analytical and testing category. R&D Magazine chose the Nexera UC system because its ...
Breaking Biology Technology: