Navigation Links
Plant hormone auxin triggers a genetic switch
Date:4/18/2011

This release is available in German.

During the development of organisms, a particular event repeatedly occurs: a signal appears temporarily, but the processes it triggers must be maintained for example, when the fate of cells in the embryo is established. The plant hormone auxin plays an important role as a signalling molecule during embryo development of the thale cress (Arabidopsis thaliana), a model plant widely used in genetic studies. Researchers from the Max Planck Institute for Developmental Biology and the University of Tbingen were already familiar with important components, through which auxin exerts its influence, and some of their interactions. They have now combined several of these components in a regulatory network such that an increasing concentration of auxin can "switch on" genes for the embryo's normal development. Once a certain point has been reached, the genes do not halt their increased activity, or only do so gradually, even if the auxin concentration declines. Similar switching mechanisms are also known from the animal kingdom.

In the normal course of events, a plant embryo becomes a seedling and the seedling grows into a plant with all of its organs: roots, stem, leaves and flowers. The foundations for this development are laid during early embryonic development. The plant hormone auxin is an important signal transmitter during this phase of development. It was already known that it promotes, for example, the breakdown of an inhibitor that can prevent certain factors from activating their target genes. In an early phase of embryo development, the auxin concentration rises in the cells located at the top of the embryo, from which the above-ground parts of the plant will later form. Shortly after that, auxin is transported into the lower cells. So complicated, so good. However, this does not fully explain the exact role of auxin in pattern formation in the embryo.

In their study on the effect of auxin, Steffen Lau, Ive De Smet, Martina Kolb and Gerd Jrgens from the Department of Cell Biology and Hans Meinhardt, all from the Max Planck Institute for Developmental Biology in Tbingen, and some also affiliated with the University of Tbingen, initially focused on a simplified system. Instead of carrying out their experiments with thale cress (Arabidopsis thaliana) embryos, they worked with thale cress protoplasts: living cells without a cell wall that offer a less complex environment. Test conditions using protoplasts can be varied rather conveniently, and it is relatively easy to measure gene activity in these cells. Using this system, the scientists tested the effects of a gene-activating factor called MONOPTEROS and that of its inhibitor BODENLOS. This and subsequent experiments showed that MONOPTEROS promotes both its own production and that of its inhibitor BODENLOS. They form a system comprising two linked feedback loops. The system is controlled by auxin, which promotes the breakdown of the inhibitor.

Based on these results, the scientists also carried out computer simulations in which they reconstructed the regulatory network. "Everything points to the fact that auxin triggers a switch in the system," says Steffen Lau. And this is how it works: when the concentration of auxin increases, breakdown of the inhibitor BODENLOS also increases. As a result, MONOPTEROS is less strongly blocked. And once a certain auxin concentration is reached, the MONOPTEROS-BODENLOS system is boosted to a higher level of activity. "As long as the auxin concentration does not fall below a certain level, the activated system does not fall back to the initial level, even if most of the auxin is transported away," explains the scientist.

This regulatory mechanism in the embryonic development of plants had not previously been described, and displays similarities to a signalling pathway in embryonic stem cells in mammals, for example. "Whether this type of regulation occurs in other developmental processes in thale cress remains to be investigated," says Steffen Lau.


'/>"/>

Contact: Gerd Juergens
gerd.juergens@tuebingen.mpg.de
49-070-716-011-309
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Ancestors of land plants revealed
2. The Last Great Plant Hunt: The story of Kews Millennium Seed Bank
3. Studies of marine animals aim to help prevent rejection of transplanted organs
4. Improvements in embryonic preimplantation genetic screening techniques
5. Circadian rhythms spark plants ability to survive freezing weather
6. Combating plant diseases is key for sustainable crops
7. Shootingstars provide clues to likely response of plants to global warming
8. Periodontal stem cell transplantation shows promise
9. New genetic study helps to solve Darwins mystery about the ancient evolution of flowering plants
10. Are invasive plants a threat to native biodiversity? It depends on the spatial scale
11. If plants generate magnetic fields, theyre not sayin
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Plant hormone auxin triggers a genetic switch
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
(Date:4/13/2016)...  IMPOWER physicians supporting Medicaid patients in ... standard in telehealth thanks to a new partnership with ... IMPOWER patients can routinely track key health measurements, such ... and, when they opt in, share them with IMPOWER ... local retail location at no cost. By leveraging this ...
(Date:3/29/2016)... March 29, 2016 LegacyXChange, Inc. ... "LEGX" and SelectaDNA/CSI Protect are pleased to announce our ... in a variety of writing instruments, ensuring athletes signatures ... created collectibles from athletes on LegacyXChange will be assured ... the DNA. Bill Bollander , CEO ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... SAN FRANCISCO , June 23, 2016   ... it has secured $1 million in debt financing from ... to ramp up automation and to advance its drug ... for its new facility. "SVB has been ... goes beyond the services a traditional bank would provide," ...
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... CA (PRWEB) , ... June 23, 2016 , ... ... software, is exhibiting at the Pennsylvania Convention Center and will showcase its product’s ... conference. ClinCapture will also be presenting a scientific poster on Disrupting Clinical Trials ...
(Date:6/23/2016)... 23, 2016 ReportsnReports.com adds ... to its pharmaceuticals section with historic and forecast ... much more. Complete report on the ... profiling 15 companies and supported with 261 tables ... . The Global Cell Culture ...
Breaking Biology Technology: