Navigation Links
Plant Min protein sits tight and rescues E. coli
Date:5/24/2009

This release is available in Chinese.

A protein vital for correct chloroplast division in plants is able to take on a similar role in bacterial cells, according to research published today in the open access journal BMC Microbiology. The Arabidopsis thaliana Min protein (AtMinD) localizes in E. coli cells' polar regions keeping cell division at its correct central location, yet unlike its E. coli homologue, AtMinD does not oscillate.

Making certain that E. coli cells divide in the centre is down to Min proteins (MinC, D and E). MinE oscillates from the middle of the cell to one pole or another, driving the MinCD complex with it. The MinCD complex prevents FtsZ polymerization at the poles but not at the mid-line of the cell, where FtsZ ring formation leads to cell division.

A team of Beijing-based scientists expressed the Arabidopsis MinD gene (AtMinD), in E. coli cells that lacked the bacterial genes for both MinD and MinE. Surprisingly, the minicell phenotype of this E. coli HL1 mutant (MinDE) was rescued by the plant AtMinD gene, even though the dynamic MinE protein was absent. The Arabidopsis homologue AtMinD behaved differently from its E. coli counterpart in that it did not oscillate between poles, instead taking a stand at the pointed ends (puncta) of the poles of E. coli cells. The scientists went on to show that the rescue by plant AtMinD required E. coli MinC, and that AtMinD bound EcMinC in these puncta, This is another remarkable finding because while Arabidopsis (and other plants) encode plastid homologs of bacterial MinD and MinE, MinC is either absent or has diverged beyond recognition.

"The complementation of E. coli HL1 mutant (MinDE) by AtMinD and the requirement of EcMinC for this complementation suggest that the function of MinD is conserved between bacteria and plants," says Yikun He, a member of the research team. "However, this complementation doesn't require the presence of EcMinE suggesting that AtMinD may have some characters different from that of EcMinD."

Exactly why and how the AtMinD localizes to the polar region in E. coli cells is unknown, but one possibility is a mechanism similar to that found in Bacillus subtilis. In this bacterium, MinCD proteins are localized to polar regions without oscillation and there is no MinE. Instead another protein, known as DivIVA, tethers MinCD to cell poles, preventing division at the cell ends.

Chloroplasts originated from cyanobacteria that colonised primitive plant cells, and the conservation of MinD, MinE and FtsZ genes in plants was already an indication of some conservation of function. Nonetheless it is unexpected and exciting to find that plant MinD can collaborate with bacterial MinC to convert E. coli from an oscillating to a Bacillus-type mechanism of Min action, and this finding opens new avenues for exploring Min function in both bacteria and plants.


'/>"/>

Contact: Charlotte Webber
charlotte.webber@biomedcentral.com
44-782-531-7342
BioMed Central
Source:Eurekalert

Related biology news :

1. ISU researcher identifies genetic pathway responsible for much of plant growth
2. MIT’s implantable device offers continuous cancer monitoring
3. Bacteria create aquatic superbugs in waste treatment plants
4. Photoselective film proves effective for controlling height in potted gardenia plants
5. Fertilization intensifies competition for light and endangers plant diversity
6. International team finds key gene that allows plants to survive drought
7. Center to investigate plant cells for better biomass fuels
8. Plants could override climate change effects on wildfires
9. Plant gene mapping may lead to better biofuel production
10. Device protects transplanted pancreatic cells from the immune system
11. Tiny super-plant can clean up animal waste and be used for ethanol production
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... HILLS, Mich. , Dec. 15, 2016  There ... unlocking car doors or starting the engine. Continental will ... in Las Vegas . Through the ... (Passive Start and Entry) and biometric elements, the international ... field of vehicle personalization and authentication. "The ...
(Date:12/8/2016)... 8, 2016 Market Research Future published a half cooked ... Mobile Biometric Security and Service Market is expected to grow over ... Market Highlights: ... Mobile Biometric Security and Service ... increasing need of authentication and security from unwanted cyber threats. The ...
(Date:12/7/2016)... AVIV, Israel , December 7, 2016 ... with the expansion of its patent portfolio, which grew to over 40 ... , , ... by its recently filed patent entitled " System, Device, and ... covers technology that enables device makers to forego costly hardware components needed ...
Breaking Biology News(10 mins):
(Date:1/23/2017)... Jan. 23, 2017  Alkahest Inc. ("Alkahest"), a ... neurodegenerative diseases and other age-related conditions, announced today ... as Chief Medical Officer. In this role, Dr. ... activities at Alkahest and serve on the Executive ... served as Executive Director at Dynavax, where he ...
(Date:1/21/2017)... , ... January 21, 2017 , ... ... endeavors to bring to market a pioneering medical device for the treatment of ... an engagement contract with Emergo, a global regulatory consultancy that helps companies like ...
(Date:1/20/2017)... ... January 20, 2017 , ... The two newest companies ... options for patients. Vironika, a spin out from The Wistar Institute, and Sanguis, launched ... space at 3624 Market Street. , Vironika is developing a treatment for a ...
(Date:1/19/2017)... Research and Markets has announced the addition of the ... Global Opportunity Analysis and Industry Forecast, 2014-2022" report to their ... Cancer ... reach $15,737 million by 2022 from $6,521 in 2015, growing at ... Omic technologies segment accounted for more than half of the revenue ...
Breaking Biology Technology: