Navigation Links
Plague alters cell death to kill host
Date:4/14/2014

Northwestern Medicine scientists are continuing to unravel the molecular changes that underlie one of the world's deadliest and most infamous respiratory infections.

When the bacterium Yersinia pestis enters the lungs, it causes pneumonic plague, a disease that is 100 percent fatal if untreated. The way in which Y. pestis evades the immune system and kills people in a matter of days has largely confounded scientists, until now.

Following a 2007 study demonstrating that the presence of a protein called the plasminogen activator protease (Pla) is required for Y. pestis to live inside the lungs, Wyndham Lathem, PhD, assistant professor in Microbiology-Immunology, has found what role Pla plays during disease.

The activator shuts down a molecule, Fas ligand (FasL), which stimulates a form of programmed cell death known as apoptosis. The result is a disrupted immune response during infection. This allows Y. pestis to overwhelm the lungs, causing death.

"This is the first time anyone has shown how bacteria can subvert apoptotic cell death by directly destroying Fas ligand," said Lathem, a member of the Center for Genetic Medicine and Interdepartmental Immunobiology Center.

The findings were published April 9 in Cell Host & Microbe.

To study its effects, scientists added Pla to glass slides with various fluorescently-tagged proteins. If the protease showed an affinity for a specific protein, it would chew off pieces, making it appear less florescent when viewed under a microscope.

"We knew that Pla must be chopping up host proteins in some manner and we looked to discover exactly what proteins were being affected," said first author Adam Caulfield, a research associate in Lathem's lab.

"As we reviewed possible hits, the 'aha moment' came when we saw Fas ligand on the list of affected proteins, because we know Fas is an integral receptor for controlling cell death," said Lathem. "The process of Pla degrading Fas ligand effectively prevents the lungs from being able to clear the infection."

After verifying their findings using cell cultures, Lathem conducted preclinical tests using mice, arriving at the same conclusion.

"Now that we have identified this as a method by which plague bacteria can manipulate the immune system, we have something to look for when studying other respiratory infections," Lathem said. "This could be a common feature, where we see other bacteria manipulating cell death pathways by altering Fas signaling."

Pneumonic plague is unique in that it is the only type of plague with an ability to spread from person to person. It is treatable if caught early, but after 24 hours, antibiotics are rendered useless.

Lathem believes that a restoration of Fas signaling may give antibiotics more time to work, and scientists in his lab are exploring that possibility. They will also be looking at different bacterial infections to see if any manipulate cell death by altering Fas signaling in a similar manner.


'/>"/>

Contact: Marla Paul
marla-paul@northwestern.edu
312-503-8928
Northwestern University
Source:Eurekalert

Related biology news :

1. Jurassic pain: Giant flea-like insects plagued dinosaurs 165 million years ago
2. UMass Amherst biochemists developing tools to stop plague and other bacterial threats
3. New research paper says we are still at risk of the plague
4. Scientists confirm that the Justinianic Plague was caused by the bacterium Yersinia pestis
5. Research uncovers historical rise, fall and re-emergence of plague strains
6. Bushfires continue to plague Victoria, Australia
7. Gastric bypass surgery alters gut microbiota profile along the intestine
8. Acute stress alters control of gene activity
9. Intense prep for law school admission test alters brain structure
10. New approach alters malaria maps
11. Circumcision alters penis microbiome, could explain HIV protection
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/19/2016)... 18, 2016 Securus Technologies, a leading provider ... safety, investigation, corrections and monitoring, announced today that it ... to have an independent technology judge determine who has ... high tech/sophisticated telephone calling platform, and the best customer ... do most of what we do – which clearly ...
(Date:11/17/2016)... , Nov. 17, 2016  AIC announces that it has just released a new ... that require high-performance scale-out plus high speed data transfer storage solutions. Photo ... ... ... Setting up a high performance computing ...
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, Inc. ... therapeutics focused on the gut microbiome, today announced ... 25,000,000 shares of its common stock and warrants ... at a price to the public of $1.00 ... Synthetic Biologics from the offering, excluding the proceeds, ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... MA and Azusa, CA (PRWEB) , ... December ... ... provider of distributed wastewater treatment and resource recovery solutions for industrial facilities, today ... Company , will be the first to use Cambrian’s novel water-energy purchase agreement ...
(Date:12/7/2016)... , ... December 07, 2016 ... ... opening applications to an early access program for SmartBiome -- a novel ... with the simultaneous specific enrichment and detection of hundreds of different genes. ...
(Date:12/6/2016)... 2016 /PRNewswire/ - SQI Diagnostics Inc. ("SQI" or the "Company") (TSX-V: SQD; ... quarter and fiscal year ended September 30, 2016. ... , , ... and diagnostics company that develops and commercializes proprietary technologies and products ... Achieved revenues of $1.4 million more than tripling prior years ...
(Date:12/6/2016)... ... 06, 2016 , ... Discovering new clues to natural treatments that could allow ... in our brains. And searching for keys to our immune systems by studying parasite-resistant ... the 2017 Edith and Peter O’Donnell Awards by The Academy of ...
Breaking Biology Technology: