Navigation Links
Pitt research identifies new target in brain for treating schizophrenia

PITTSBURGH--Research from the University of Pittsburgh could expand the options for controlling schizophrenia by identifying a brain region that responds to more than one type of antipsychotic drug. The findings illustrate for the first time that the orbitofrontal cortex could be a promising target for developing future antipsychotic drugseven those that have very different mechanisms of action. The study will be published during the week of Nov. 3 in the online edition of the journal Proceedings of National Academy of Sciences, with a print version to follow.

Bita Moghaddam, a professor in the Department of Neuroscience in Pitt's School of Arts and Sciences and the paper's lead author, found that schizophrenia-like activity in the orbitofrontal cortexa brain region responsible for cognitive activity such as decision makingcould be triggered by the two different neurotransmitters linked to schizophrenia: dopamine and glutamate. Brain activity was then normalized both by established antipsychotic medications that regulate only dopamine and by experimental treatments that specifically target glutamate.

"The orbitofrontal cortex is an area that's been somewhat neglected in schizophrenia research. This study should encourage researchers to focus on this brain region in imaging and other human studies, and also to use as a model for developing antipsychotic drugs," Moghaddam said. "Schizophrenia appears to be caused by very diverse and sometimes rare genetic mutations. Diverse mutations can end up causing the same disease if they disrupt the function of a common group of neurons or networks of neurons. We think that the key to understanding the pathophysiology of schizophrenia and finding better treatments is to identify these networks. This data suggests that the orbitofrontal cortex may be a critical component in networks affected by schizophrenia."

Working with UPMC neurology resident Houman Homayoun, Moghaddam first established that dopamine and glutamate could, separately, produce schizophrenia-like symptoms in the orbitofrontal cortex. They first simulated symptoms brought on by irregular neural receptors of glutamate. Studies within the last few yearsincluding work by Moghaddam at Yale Universityhave shown that under-functioning glutamate receptors known as NMDA receptors can produce schizophrenia-like symptoms. Moghaddam and Homayoun found that stunting the NMDA receptors resulted in schizophrenia-like effects in the orbitofrontal cortex. The team also used a dose of amphetamine to simulate dopamine-related schizophrenia symptoms in the orbitofrontal cortex; schizophrenia is often linked to an excess of dopamine in the brain.

Moghaddam and Homayoun then tested the currently prescribed medicationa treatment developed more than 50 years ago that targets neural receptors of dopamineand new experimental drugs that work on the glutamate system. They found that both medications normalized brain activity.


Contact: Morgan Kelly
University of Pittsburgh

Related biology news :

1. Research conference at UH to focus on US troops needs, homeland security
2. Scripps research scientists identify compounds for stem-cell production from adult cells
3. State fund advances titanium powder research, 9 other Iowa State projects
4. Research shows that time invested in practicing pays off for young musicians
5. Trustee makes donation to start new solar energy research center at Rensselaer
6. NJIT seminar set for Nov. 6 to focus on bioelectronics -- emerging research area
7. Corn researchers discover novel gene shut-off mechanisms
8. Researchers at UH explore patient preferences for personalized medicine
9. OSAs ISP launches with research on breathing disorders and congenital heart defects
10. UC Davis researchers discover a key to aggressive breast cancer
11. Bayhill Therapeutics and the Juvenile Diabetes Research Foundation announce research collaboration
Post Your Comments:
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
(Date:6/3/2016)... , June 3, 2016 ... von Nepal hat ... Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung ... in der Produktion und Implementierung von Identitätsmanagementlösungen. ... Ausschreibung im Januar teilgenommen, aber Decatur wurde ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of ... the latest premium product recently added to the range of products distributed by Ampronix. ... ... ... Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and ... and the 6000i models are higher end machines that use the more unconventional z-dimension ... light beam from the bottom of the cuvette holder. , FireflySci has developed ...
(Date:6/23/2016)... WA (PRWEB) , ... June 23, 2016 , ... ... announces the release of its second eBook, “Clinical Trials Patient Recruitment and Retention ... recruitment and retention in this eBook by providing practical tips, tools, and strategies ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
Breaking Biology Technology: