Navigation Links
Pitt receives $2.5 million to simulate and analyze brain, immune system activity
Date:6/24/2008

PITTSBURGHIn an effort to promote the application of mathematics to medical treatment, researchers in the University of Pittsburgh's Department of Mathematics will undertake a $2.5 million project to create models of how the brain and immune system function and change over time in response to certain illnesses, infections, and treatment. The models are intended to help doctors better understand and predict the possible short- and long-term responses of their patient's body to treatment.

The National Science Foundation awarded University professor G. Bard Ermentrout, assistant professor Beatrice Riviere, associate professor Jonathan Rubin, assistant professor David Swigon, and professor and interim chair Ivan Yotov a nearly $1.8 million Research Training Group (RTG) award. The RTG includes resources for creating training programs for mathematics students wherein they would work with physicians and biologists to help resolve complicated medical problems through mathematics. Pitt's School of Arts and Scienceswhich houses the mathematics departmentprovided additional funds.

The team will create a variety of computer models based on differential equationswhich predict how systems evolve over timewith the medical guidance of scientists and doctors in Pitt's Departments of Biological Sciences and Neuroscience, the Pitt School of Medicine, and UPMC, said Rubin, a coinvestigator on the project.

The immune system models will plot the various chemical and physical changes that occur as the body battles influenza, inflammation, sepsis and necrosis, and wounds. Ultimately, Rubin explained, the researchers want to pinpoint the origin of such conditions as multiple organ dysfunction syndrome (multiple organ failure), a potentially deadly, uncontrollable inflammation that usually strikes ailing patients with compromised immune systems.

"Infection and inflammation kill people in the intensive care unit," Rubin said. "We hope that by building this model and calculating how to control the system, we can help doctors design a clinical strategy for intervention based on a condition's progression."

The neurological models will outline the typical course of activity in various brain regions, communication among brain cells, and time-dependent changes in the synapsesthe small gaps between cells through which they communicate. The team will look for how electrical signals and brain waves transmit between brain cells and, in turn, the manner in which those impulses alter the cells.

One clinical application, Rubin said, would be for improving therapies for neurological conditions, such as deep brain stimulation (DBS), which manipulates brain activity via a surgically implanted device that emits electric pulses. Despite DBS' effectiveness in treating such conditions as chronic pain and Parkinson's disease, how it works remains unknown, Rubin said. Once the pathways of brain activity are exposed, he continued, doctors could observe how DBS functions and better control the electrical currents to avoid the known psychological side effects.

The complicated models simulate the extensive, constant interaction of various cells and organs operating on multiple time scales, from the immeasurably swift to a full day. The complexity of these models will require the development of new simulation and mathematical techniques, but the work could apply to several other biological systems.

"We're exploring mathematical and computational territory that has not been understood yet," Rubin said. "For instance, the brain contains millions of neurons that in turn contain very small molecules [neurotransmitters]. This network functions on a time scale measured in submilliseconds, a scale so small that no one can really grasp how short it is. At the same time, the brain manages and abides by the circadian rhythm, the body's 24-hour cycle.

"If we make a breakthrough on how to map these time scales, it would apply to multiple systems," Rubin added.


'/>"/>

Contact: Morgan Kelly
mekelly@pitt.edu
412-624-4356
University of Pittsburgh
Source:Eurekalert

Related biology news :

1. NJIT biomedical engineer receives NSF Career Development Award
2. Monash researcher receives prestigious Commonwealth Health Ministers award
3. Spradling receives Gruber Foundation Genetics Prize for new genetic techniques
4. UNH receives $380,000 grant to study organic dairy as closed ecosystem
5. Ape language pioneer Savage-Rumbaugh receives honorary Ph.D. from alma mater
6. Jefferson receives $11.6M NIH grant to study novel mechanisms of heart failure
7. BIO-key(R) Receives $335,000 Contract Award From Baltimore Police
8. UCSB receives $3.2 million stem cell grant from state
9. Smithsonian scientist receives 2008 Medal for Excellence in tropical botany
10. Atmel Receives Frost & Sullivans Technology Innovation Award for FingerChip(R) Biometric Sensor
11. McMaster University engineering professor receives Humboldt Research Award
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/2/2017)... Australia , March 2, 2017 Australian ... Ltd (ASX: CYP), has signed an agreement with ... from the Monash Biomedicine Discovery Institute and Department of ... to conduct a further preclinical study to support the ... treatment of asthma.  Asthma is a ...
(Date:2/27/2017)... 27, 2017   Strategic Cyber Ventures , the ... led a $3.5 million investment in  Polarity , the ... Ventures is DC based and is led by cybersecurity ... . Ron Gula , also a longtime cybersecurity ... in this series A round of funding. This new ...
(Date:2/21/2017)... -- Der weltweite Biobanking-Sektor wird bis zum ... mit mehr als 50 Vertretern aus verschiedenen Branchen wurde aber ... diese Prognose zu realisieren. ... Zu den Schwierigkeiten für ... für die Biobank, die Implementierung Zeit sparender Technologien, ein ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... ... March 23, 2017 , ... Lajollacooks4u is proud to announce it has become the ... corporate cooking challenges for companies around the world, such as Illumina, HP and Qualcomm, and ... reason for its increasing popularity is due to its new team building format, a way ...
(Date:3/23/2017)... MILFORD, Mass. , March 23, 2017 ... leading partner to global in vitro diagnostics ... launch of the industry,s first multiplexed ... inherited disease testing by next-generation sequencing ... materials were developed with input from industry ...
(Date:3/23/2017)... ... March 23, 2017 , ... Ellen ... the Connecticut Technology Council (CTC) as a 2017 Women of Innovation® finalist. Matloff ... of Innovation Awards Dinner. , The dinner recognizes women accomplished in science, technology, ...
(Date:3/23/2017)... , March 23, 2017 According to a ... and derivatives market is fragmented due to the presence of a large ... Proliant, Thermo Fisher , and Sigma-Aldrich, compete with each other ... companies, collectively, held more than 76% of this market in 2016.  ... As of now, ...
Breaking Biology Technology: