Navigation Links
Pitt Dental School researchers find susceptibility for caries, gum disease in genes
Date:4/15/2010

PITTSBURGH, April 15 Certain genetic variations may be linked to higher rates of tooth decay and aggressive periodontitis, according to two recently published papers by researchers at the University of Pittsburgh School of Dental Medicine and their collaborators.

Alexandre R. Vieira, D.D. S., Ph.D., senior author of both papers and an assistant professor of oral biology, and his colleagues at the School of Dental Medicine found that the rate of dental caries was influenced by individual variations, or polymorphisms, in a gene called beta defensin 1(DEFB1), which plays a key role in the first-line immune response against invading germs. The findings are available online in the Journal of Dental Research.

"We were able to use data gathered from our Dental Registry and DNA Repository, the only one of its kind in the world, to see if certain polymorphisms were associated with the development of caries," Dr. Vieira said. "This could help us find new ways to treat people who are particularly susceptible to tooth decay, a problem that afflicts millions of Americans."

For the study, the researchers analyzed nearly 300 anonymous dental records and accompanying saliva samples from the registry, assigning each case a DMFT score based on the presence of decayed teeth, missing teeth due to caries, and tooth fillings, as well as a DMFS score, based on decayed teeth, missing teeth, and filled surface of a tooth. In general, individuals with fewer caries have lower DMFT and DMFS scores.

Saliva samples contained one of three variants, dubbed G-20A, G-52A and C-44G, of the DEFB1 gene. Individuals who carried a G-20A copy had DMFT and DMFS scores that were five-times higher than for people who had other variants. The G-52A polymorphism was associated with lower DMFT scores.

"It's possible that these variations lead to differences in beta defensin's ability to inhibit bacterial colonization," Dr. Vieira said. "In the future, we might be able to test for these polymorphisms as clinical markers for caries risk."

In a second paper, published last week in PLoS One, Dr. Vieira, colleagues at Pitt and collaborators in Brazil studied saliva samples of 389 people in 55 families to look for genetic links to aggressive periodontitis, which is rapid and severe destruction of the gums and bone that starts at a young age and is thought to be more common in Africans and those of African descent. Brazil's population is composed primarily of Caucasians of Portuguese ancestry, Africans and native Indians.

They found hints of an association between the disease and the FAM5C gene. While further testing did not find any mutations or polymorphisms that bore out a relationship, other experiments showed elevated levels of FAM5C expression, or activation, in areas of diseased periodontal tissue compared to healthy tissue.

"The FAM5C gene recently was implicated in cardiovascular disease, in which inflammation plays a role, just as in periodontitis," Dr. Vieira said. "More research is needed to see if variation in the gene is associated with different activity profiles."


'/>"/>

Contact: Anita Srikameswaran
SrikamAV@upmc.edu
412-578-9193
University of Pittsburgh Schools of the Health Sciences
Source:Eurekalert

Related biology news :

1. Military application of Transcendental Meditation gaining acceptance
2. How can accidental captures of loggerhead turtles be reduced?
3. Cleveland Clinic, CWRU dental researcher finds switch that turns on the spread of cancer
4. Smart coating opens door to safer hip, knee and dental implants
5. University of Plymouth invests in dental research
6. Dental delight: Tooth of sea urchin shows formation of biominerals
7. Accidental discovery produces durable new blue pigment for multiple applications
8. New generation of orthopedic, dental and cardiovascular prostheses
9. Eastman Dental Center awarded $1.6 million to find ways to prevent cavities
10. Lower your blood pressure, hydrate your skin and reduce dental plaque -- with chocolate?
11. SAGE-Hindawi launch Journal of Dental Biomechanics
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2017)... SAN FRANCISCO and MOUNTAIN VIEW, ... Zipongo , "Eating Well Made Simple," and 23andMe ... to help guide better food choices.  Zipongo can now ... only their food preferences, health goals and biometrics, but ... to certain food choices. Zipongo,s personalized food ...
(Date:3/7/2017)... March 7, 2017   HireVue , the leading ... companies identify the best talent, faster, today announced the ... Officer (CSO) and Diana Kucer as Chief ... seasoned executive team poised to drive continued growth in ... a year of record bookings in 2017. ...
(Date:3/2/2017)... 2017 Summary This report provides all ... partnering interests and activities since 2010. ... Read the full report: ... 2010 report provides an in-depth insight into the partnering activity ... On demand company reports are prepared upon purchase to ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... ... April 21, 2017 , ... The ... 10 categories with over 30 nominees and well as the first-year award for ... award and the event was hosted by CompanyWeek and Manufacturers Edge, among other ...
(Date:4/21/2017)... , ... April 21, 2017 , ... ... Webster Bank, today announced first round funding to three startups through the UConn ... financial support to new business startups affiliated with UConn. , The UConn Innovation ...
(Date:4/21/2017)... IN (PRWEB) , ... April 21, 2017 , ... The ... to 11 high school graduates from across the nation. The scholarships are created through ... AMA member dues. , Scholarship criteria are set by the AMA Scholarship Committee, which ...
(Date:4/21/2017)... ... ... Frederick Innovative Technology Center, Inc. (FITCI), a business incubator ... a $77,518 grant from the Rural Maryland Council (RMC) to support refurbishment of ... incubator. A non-profit corporation, FITCI is a public-private partnership of the governments of ...
Breaking Biology Technology: