Navigation Links
Picower: Schizophrenia gene associated with psychiatric disorders and brain development

CAMBRIDGE, Mass. -- Significant progress has been made in understanding the genetic risk factors underlying psychiatric disease. Recent studies have identified common genetic mutations conferring modest risk and rare variants comprising significant risk. One example of a rare cause of psychiatric disorders is the Disrupted in Schizophrenia-1 (DISC1) gene, first identified in a large Scottish pedigree displaying schizophrenia, bipolar disorder and depression.

Common variants in DISC1 have been associated with altered cognition, brain structure and function, but it was unknown how this occurs. A new study co-authored by Li-Huei Tsai, director of MIT's Picower Institute for Learning and Memory, and her colleagues -- Karun K. Singh, Laurel Drane, Yingwei Mao, Zachary Flood and Cillian King -- demonstrates how DISC1 variants impair signaling pathways and disrupt brain development. This work is slated to appear in the November 17 issue of Neuron.

Signaling pathways offer clues

Earlier studies implicated common DISC1 variants in aberrant brain development, but the functional impact remained unclear, including whether these mutations affect the signaling pathways that influence brain structure. The new MIT study provides a framework to explain previously reported associations between DISC1 variants, human brain structural changes and psychiatric disorders. MIT researchers hypothesized that effects on brain development associated with common DISC1 variants are the result of disruption in specific signaling pathways.

The Picower Institute for Learning and Memory recently reported that DISC1 modulates Wnt signaling via GSK3β. Picower Institute Director Li-Huei Tsai commented: "The finding that DISC1 directly inhibits GSK3β is interesting given that the common mood stabilizer drug lithium and the schizophrenia risk gene Akt also inhibit GSK3β, which results in activation of canonical Wnt signaling, suggesting it may be an important target in psychiatric disease."

Unique approach enables deeper discovery

In an effort to understand the functional impact of DISC1 genetic variation on brain development in the new study, the research team employed an experimental approach featuring multiple model systems spanning three species (mouse, zebrafish and human cells).

The study presents evidence that common and rare DISC1 variants negatively affect neurogenesis and neuronal migration via different signaling pathways. The neuroscientists' findings demonstrate that three DISC1 variants disrupt Wnt/GSK3β signaling and neural progenitor cell proliferation. A fourth mutation does not impact Wnt signaling, but the research indicates that it inhibits neuronal migration in the developing cortex via another signaling pathway. Human cells carrying a particular variant displayed significantly impaired Wnt signaling, while a different variant inhibited neuronal migration in the developing mouse cortex.

Findings potentially influence diagnosis and treatment

All of the DISC1 genetic variants studied play a role, separately and during interaction, in regulating specific signaling pathways during brain development, thereby impacting cortical structure and function, and, ultimately, behavior. Common variants affecting baseline Wnt signaling may serve as an early indicator of mental illness for some individuals, while the presence of additional risk genetic variants might provide further warning signs. "Our findings reveal an underlying association between DISC1 mutations, the distinct differences in human brains, and the onset of psychiatric disease," said Tsai.

Given that specific DISC1 variants affect Wnt signaling and brain development, this pathway may play a significant role in mediating mood and psychiatric disorders. Since the common mood stabilizer lithium increases Wnt signaling, as noted above, it may help bipolar sufferers in particular. Also, schizophrenia patients who carry a specific genetic variant and therefore don't respond to typical medication may benefit from increased efficacy of antipsychotic treatment.

The results of this study provide greater insight into the mechanisms that regulate multiple processes during brain development and how specific genetic variations may contribute to mental illnesses. Given that future research will provide sequencing data for genes that regulate Wnt signaling and brain development, it will be critical to understand how DISC1 variant interactions with these genes influence risk for psychiatric disorders.

Contact: David M. Vaughn, Picower Institute
Massachusetts Institute of Technology

Related biology news :

1. Mental illness: Probing the causes of schizophrenia, depression and anxiety
2. Study finds bidirectional relationship between schizophrenia and epilepsy
3. Mutations not inherited from parents cause more than half the cases of schizophrenia
4. New genetic clues for schizophrenia
5. Brain development goes off track as vulnerable individuals develop schizophrenia
6. Can one model the social deficits of autism and schizophrenia in animals?
7. Johns Hopkins team creates stem cells from schizophrenia patients
8. Rare gene glitch may hold clues for schizophrenia -- NIH-funded study
9. VCU study: Team uncovers possible risk gene for schizophrenia
10. Schizophrenia and psychotic syndromes
11. Immune responses during pregnancy linked to schizophrenia among offspring
Post Your Comments:
(Date:6/2/2016)... , June 2, 2016   The Weather Company , ... Watson Ads, an industry-first capability in which consumers will be ... able to ask questions via voice or text and receive ... Marketers have long sought an advertising ... that can be personal, relevant and valuable; and can scale ...
(Date:5/16/2016)... YORK , May 16, 2016   EyeLock ... solutions, today announced the opening of an IoT Center ... to strengthen and expand the development of embedded iris ... an unprecedented level of convenience and security with unmatched ... authenticate one,s identity aside from DNA. EyeLock,s platform uses ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted to ... of 2015 The gross margin was 49% (27) ... operating margin was 40% (-13) Earnings per share rose ... was SEK 249.9 M (21.2) , Outlook   ... The operating margin for 2016 is estimated to exceed ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... - BIOREM Inc. (TSX-V: BRM) ("Biorem" or "the Company") announces ... Clean Technology Fund I, LP and Clean Technology Fund ... venture capital funds which together hold approximately 59% of ... as converted basis), that they have entered into an ... in Biorem to TUS Holdings Co. Ltd. ("TUS") ( ...
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. ... the faculty of the University of North Carolina Kenan-Flagler Business School ... entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading ...
(Date:6/24/2016)... ... 2016 , ... While the majority of commercial spectrophotometers and fluorometers use the ... models are higher end machines that use the more unconventional z-dimension of 20mm. ... the bottom of the cuvette holder. , FireflySci has developed several Agilent flow ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
Breaking Biology Technology: