Navigation Links
Physics and math shed new light on biology by mapping the landscape of evolution

Although the qualitative description of evolution its observed behavior and characteristics is well-established, a comprehensive quantitative theory that captures general evolution dynamics is still lacking. There are also many lingering mysteries surrounding the story of life on Earth, including the question of why sex is such a prevalent reproductive strategy. A team of scientists from the Chinese Academy of Sciences; Jilin University in Jilin, China; and the State University of New York at Stony Brook, led by Prof. Jin Wang, has examined some of these puzzles from a physical science prospective. They propose a new theory of evolution with two ingredients: the underlying emergent "fitness" landscape and an associated evolutionary force called "curl flux," which causes species to move through the emergent fitness landscape in a spiraling manner.

The researchers captured evolutionary relationships in a system of equations. They then created quantitative pictures that visualized evolutionary pathways as journeys through a mountainous terrain of peaks and valleys of biological fitness. The key breakthrough beyond the conventional quantitative theory of evolution is the emergent curl flux, which is generated by interactions between individuals within or across species. The underlying emergent landscape gradient and the curl flux act together as a "Yin and Yang" duality pair to determine the dynamics of general evolution, says Wang. An example of similar behavior is the particle and wave duality that determines the dynamics of the quantum world, he notes. The researchers also note that this combined effect is analogous to the way electric and magnetic forces both act on electrons.

The new theory provides a physical foundation for general evolution dynamics. The researchers found that interactions between individuals of different species can give rise to the curl flux. This can sustain an endless evolution that does not lead to areas of higher relative fitness, even if the physical environment is unchanged.

This finding offers a theoretical framework to explain the Red Queen Hypothesis, which states that species continually evolve in order to fend off parasites that are themselves continually evolving. The hypothesis, first proposed by evolutionary biologist Leigh Van Valen in 1973, gets its name from the character of the Red Queen in Lewis Carroll's book Through the Looking-Glass, who observed that in her world it was necessary to keep running just to stay in one place. The idea of endless co-evolution through the maintenance of the genetic variation due to the curl flux could help explain the benefits of sexual reproduction, since the mixing and matching of genes preserves a greater diversity of traits. When a species' arms race with a co-evolving parasite takes an unexpected twist, a previously unnecessary trait could suddenly turn into the key to surviving. In the co-evolving world, there is no guarantee for "survival of the fittest" and it is often necessary to keep running for survival. The researchers publish their results in the American Institute of Physics' Journal of Chemical Physics.

Contact: Catherine Meyers
American Institute of Physics

Related biology news :

1. Young Scientist Award for Socio- and Econophysics 2012 for Arne Traulsen
2. T cells hunt parasites like animal predators seek prey, a Penn Vet-Penn Physics study reveals
3. The physics of going viral
4. Physics confirms sprinters are performing better than ever before
5. New study shines light on barriers to diabetes care in NYC Bangladeshi community
6. EPA to highlight innovative ways to detect and respond to biological threats
7. Ancient whale species sheds new light on its modern relatives
8. Linking and lightening: New partnership connects and reveals dark data
9. AGU journal highlights for March 29, 2012
10. AGU journal highlights for April 16, 2012
11. Folding light: Wrinkles and twists boost power from solar panels
Post Your Comments:
(Date:11/18/2015)... York , November 18, 2015 ... Research has published a new market report titled  Gesture ... Trends, and Forecast, 2015 - 2021. According to the report, ... 2014 and is anticipated to reach US$29.1 bn by ... 2021. North America dominated ...
(Date:11/17/2015)... Paris , qui ... Paris , qui s,est tenu du ... leader de l,innovation biométrique, a inventé le premier scanner ... sur la même surface de balayage. Jusqu,ici, deux scanners ... les empreintes digitales. Désormais, un seul scanner est en ...
(Date:11/17/2015)... Nov. 17, 2015 Pressure BioSciences, Inc. (OTCQB: ... development and sale of broadly enabling, pressure cycling technology ... industry, today announced it has received gross proceeds of ... Private Placement (the "Offering"), increasing the total amount raised ... more additional closings are expected in the near future. ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... 2015 ) ... U.K. Virology and Bacteriology Testing Market: Sales ... Supplier Shares by Test, Innovative Technologies, Competitive ... --> ) has announced ... and Bacteriology Testing Market: Sales and Volume ...
(Date:11/30/2015)... , Dec. 1, 2015  An interventional radiology technique ... to the preliminary results of a study being presented today ... North America (RSNA). ... done for decades by interventional radiologists as a way to ... the procedure as a means of treating obesity is new. ...
(Date:11/30/2015)... /PRNewswire/ - Zenith Epigenetics Corp. ("Zenith" or the "Company") today ... to its Board of Directors to replace Dr. ... wealth of experience as co-founder of Resverlogix, with expertise in ... --> --> Dr. Wong remarked, "I am ... Zenith,s long standing expertise in epigenetics and the advanced stage ...
(Date:11/30/2015)... JACKSONVILLE, Florida , November 30, 2015 ... company specializing in the development of innovative peptide and ... & metastatic disease, today announced it will be presenting ... Event on December 1, 2015 at 2.30 PM PT. ... member and Strategic Advisor will be giving the presentation ...
Breaking Biology Technology: