Navigation Links
Physics, math provide clues to unraveling cancer

ANN ARBOR, Mich. Biology exists in a physical world. That's a fact cancer researchers are beginning to recognize as they look to include concepts of physics and mathematics in their efforts to understand how cancer develops -- and how to stop it.

The movement, led by researchers at the University of Michigan Comprehensive Cancer Center, has come to a head with a new section in one of the top cancer research journals and a new grant program from the National Cancer Institute.

Traditional cancer biology involves taking a sample of cells and holding them in time so they can be studied. Then the researchers look at that slice of cells to understand what signals and pathways are involved. But that doesn't capture the full picture, says Sofia Merajver, M.D., Ph.D., co-director of the Breast Oncology Program at the U-M Comprehensive Cancer Center.

"The living cell is really a dynamic process. We need to consider the properties of physics to help us understand these data. In order to develop a drug directed against a given molecule that has real hope of treating cancer, we need to understand how that molecule is sitting in the cell, interacting with other molecules," says Merajver, professor of internal medicine at the U-M Medical School.

Merajver and her team have developed a sophisticated mathematical model to help researchers apply these concepts to cancer. The mathematical model is designed to help give researchers a complete picture of how a cell interacts with its surrounding environment. By understanding the full complexity of signaling pathways, researchers can better target treatments and identify the most promising potential new drugs.

Researchers have learned from this modeling that a well-known and major type of signaling pathway naturally transmits information not just in a forward direction, but also backwards. That implies new considerations for developing drugs to inhibit major growth and metastasis pathways in cancer.

This crosstalk was missed by conventional methods. Typically, when scientists begin to look at a cell, they must make assumptions to simplify the picture of what is happening in cells.

"When you make simplifying assumptions, you always run the risk of eliminating critical aspects of your system, but you have no way of knowing what was discarded. When you simplify, you don't know exactly what you're throwing away because you never looked at the complex case," Merajver says. Mathematical modeling allows researchers to look at the complex case more thoroughly.

"To understand how the laws of physics can be applied to biological systems is a new frontier," she says.

Merajver and her colleagues were successful in getting the journal Cancer Research to add a new regular section to the twice-monthly journal precisely focused on mathematical modeling. The journal has also added new editors to its board who have expertise in this discipline. Merajver and Trachette Jackson, Ph.D., professor of mathematics at U-M, will lead this effort as senior editors.


Contact: Nicole Fawcett
University of Michigan Health System

Related biology news :

1. American Physical Society announces Physics, a new, free, online publication
2. M2SYS Partners With Gnosis Medical Services to Provide Accurate Patient Identification in Developing Countries Through Innovative Biometrics Solution
3. Improved e-jet printing provides higher resolution and more versatility
4. Canada provides $1.4M for removal of hazardous trees from provincial recreation sites
5. Fujitsu and HT Systems Partner to Provide Biometric Patient Identity Management
6. Fujitsu and HT Systems Partner to Provide Biometric Patient Identity Management
7. M2SYS Technology Partners with TeraCorp Enterprises to Provide Added Security Within Check Cashing Solution
8. Study involving more than 100 scientists provides new insights on green algae
9. Shell Provides Consumers Gasoline Industrys First Pay By Touch Technology at the Pump
10. Antioxidants could provide all-purpose radiation protection
11. ESA to provide essential launch control services to EUMETSAT
Post Your Comments:
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
(Date:11/10/2015)... , Nov. 10, 2015  In this ... the basis of product, type, application, disease ... in this report are consumables, services, software. ... are safety biomarkers, efficacy biomarkers, and validation ... report are diagnostics development, drug discovery and ...
(Date:11/4/2015)... York , November 4, 2015 ... a new market report published by Transparency Market Research "Home ... Growth, Trends and Forecast 2015 - 2022", the global home ... US$ 30.3 bn by 2022. The market is estimated ... forecast period from 2015 to 2022. Rising security needs ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Switzerland (PRWEB) , ... November 24, 2015 , ... ... plant and the environment are paramount. Insertion points for in-line sensors can represent ... has developed the InTrac 781/784 series of retractable sensor housings , which ...
(Date:11/24/2015)... , Nov. 24, 2015 HemoShear ... on discovering drugs for metabolic disorders, announced today ... to its Board of Directors (BOD). Mr. Watkins ... of Human Genome Sciences (HGS), and also served ... Jim Powers , Chairman and CEO ...
(Date:11/23/2015)... , Nov. 24, 2015 Women with a ... CT exams face a higher risk of lung cancer than ... presented next week at the annual meeting of the Radiological ... --> --> Lung nodules ... classified as solid or subsolid based on their appearance on ...
(Date:11/23/2015)... The royalty-free a greement a llows ... 112 low- and m iddle-i ncome ... --> The Medicines Patent Pool (MPP) today announced its ... with Bristol-Myers Squibb for daclatasvir, a novel direct-acting antiviral that ... virus.  The royalty-free licence will enable generic manufacture of daclatasvir ...
Breaking Biology Technology: