Navigation Links
Photosynthesis: Membranes in tight corners
Date:7/10/2013

Photosynthesis takes place in specialized membrane systems, made up of stacked disks linked together by unstacked planar leaflets. A team of Ludwig-Maximilians-Universitaet (LMU) in Munich has now identified a protein that tucks the membrane in at the edge of each stack.

Scanning electron microscopy (SEM) micrograph of a chloroplast in maize (Zea mays) showing thylakoids (green) and assimilation starch granules (grey). (Prepared by freeze fracturing; micrograph is pseudo-colored.) (Source: G. Wanner LMU)

By making use of sunlight to generate molecular oxygen and other energy-rich chemical compounds that other organisms can utilize as nutrients, photosynthesis provides the basis for almost all life on Earth. Radiant energy from the Sun is captured by pigment-protein complexes embedded in specialized membrane systems called thylakoids. The thylakoids of green plants reside within organelles called chloroplasts, membrane-bounded compartments in the cell cytoplasm that serve as self-contained reaction vessels.

Thylakoids are made of stacks of 5 to 20 flat membrane sacs called grana, and extended planar membrane sheets that serve to interconnect them, so that all thylakoids in a chloroplast form a continuous network. To form the stacks of appressed sacs, the membrane must be bent into a tight fold at their edges. This implies that the thylakoid membranes forming the grana stacks must somehow be induced to curve at regular intervals. "The origin of the stacked organization of the thylakoids and the local alterations in membrane curvature has been a complete mystery up to now," says LMU biologist Professor Dario Leister.

Leaning into the curve with CURT1

Leister and his group have now identified a new family of proteins, whose members spontaneously cause membranes to bend. The researchers call them CURT1 proteins (for CURvature of Thylakoids). "Without CURT1 proteins, there are no stacks," Leister reports. Using the model plant Arabidopsis, he and his colleagues have been able to show that the concentration of CURT is directly correlated with the number of thylakoid stacks in chloroplasts. CURT1 itself is primarily localized at the edges of the grana, exactly where the membrane is maximally curved. In addition, the researchers have shown in the test-tube that isolated CURT1 molecules spontaneously assemble into larger complexes that can alter the curvature of membranes. "It is therefore likely that the aggregation of several CURT1 molecules plays an important role in the formation of thylakoid stacks in the chloroplasts," Leister concludes.

In the longer term, the new findings could contribute to the optimization of photosynthesis. The grana stacks in the thylakoids are enriched for the antennal proteins that gather and channel light energy and the reaction centers known as Photosystem II. They are therefore, in many respects, more efficient energy converters than the single-layered membrane sheets that connect them together, which harbor Photosystem I. Understanding how CURT1 functions might therefore allow one to increase the degree of stacking and enhance the efficiency of photosynthesis and perhaps increase yields from crop plants. In cooperation with the Edmund Mach Foundation (Trento, Italy) and the University of Trento, the authors of the new study have applied for patent protection for the use of CURT1 in this setting.


'/>"/>

Contact: Luise Dirscherl
dirscherl@lmu.de
49-892-180-2706
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Photosynthesis: The last link in the chain
2. Modifications of a nanoparticle can change chemical interactions with cell membranes
3. Patel recognized with NSF Career Award for computer-modeling research on cell membranes
4. Laser liposuction melts fat, results in tighter skin
5. Researchers find critical regulator to tightly control deadly pulmonary fibrosis
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... April 11, 2017 NXT-ID, Inc. (NASDAQ: ... company, announces the appointment of independent Directors Mr. Robin ... its Board of Directors, furthering the company,s corporate governance and ... Gino Pereira ... look forward to their guidance and benefiting from their considerable ...
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:6/19/2017)... , ... June 19, 2017 , ... ... for clinical development reported today that it is launching two new additions of ... will be demonstrating new capabilities at the DIA 2017 Annual Meeting in Chicago, ...
(Date:6/16/2017)... ... 2017 , ... Cognition Corporation , a software company ... of its “From the Helm” Webinar Series. , The next two free ... design control exercises. Led by David Cronin, Cognition’s CEO, the half-hour public webinars ...
(Date:6/15/2017)... ... 2017 , ... New resistant soybean and cotton cropping systems ... amaranth and other broadleaf weeds resistant to glyphosate. But scientists with the Weed ... known to drift and to cause harm to sensitive, off-target broadleaf plants. , ...
(Date:6/15/2017)... (PRWEB) , ... June 15, 2017 , ... ... Saranas, a promising new medical device startup. Dan Parsley, angelMD’s SVP of Corporate ... angelMD members, and this angelMD syndicate is part of Saranas’ recently announced $4 ...
Breaking Biology Technology: