Navigation Links
Pheromones regulate aggression of non-mother female mice toward pups in wild-derived mice
Date:8/5/2014

Laboratory mice are one of the most common animal models used in biological and medical research. Thousands of laboratory mouse strains are produced by artificial selection the process by which humans breed animals over dozens of generations for particular traits. This has led to the domestication of mice: strengthening specific qualities that make them well-adapted for research under laboratory conditions, such as rapid reproduction, while eliminating characteristics that are not conducive to research, for example, aggression, the desire and ability to escape from danger, and anxiety caused by environmental disturbances.

However, the artificial selection process also caused the mice to lose the very important trait of being able to survive in the wild. Besides these lost traits, the female lab mice developed the tendency to immediately mate with every male in their vicinity, including siblings and parents. That is, they lost the ability to selectivity choose a mate according to traits that "promise" the offspring better genes and a higher survival rate than those who share a common descent. At the same time, they evolved the willingness to take care of pups belonging to "strangers" (even if they are not themselves mothers). The strains of lab mice chosen to undergo further artificial selection are those who are not "fussy eaters," grow faster and reach sexual maturity more quickly relative to wild mice. That is how we ended up with larger, less aggressive mice that reproduce at a younger age and are less particular when it comes to choosing a mate. In other words, these strains are quite different from wild mice with regard to structural, physiological and behavioral features.

Dr. Tali Kimchi of the Weizmann Institute's Neurobiology Department understood that these laboratory mouse strains are not suitable for answering some types of questions posed by her research, which focuses on the neural and genetic roots of social behavior, including reproduction and maternal instinct (for example, a mother's aggression toward another's offspring, and the role of odors pheromones in mate selection and caring for offspring). Therefore, Kimchi had to develop a unique mouse strain, restoring those properties removed from the laboratory mouse strains, while retaining the ability to employ genetic engineering tools to create mutant strains (a genetic change that disables the function of a particular gene).

To do this, Kimchi and her research group backcrossed strains of laboratory mutant mice that had a specific mutation in the gene responsible for detecting pheromone signals, with wild-derived (undomesticated) mice for ten generations. As a result, in these new backcrossed strains of mice, the scientists managed to reinstate traits typical of wild mice, which were lost through the domestication process and are absent in laboratory strains, including those pertaining to behavior, body structure, hormones, various biological processes and genetic functions. More specifically, they restored, among other things, the ability to react to and escape from danger, spontaneous anxiety-related jumping and freezing behavior, and aggressive attacks toward other females. Another important feature that was restored in the new breed of mice was maternal instinct: Nave (not yet mated and maternal) backcrossed wild-derived female mice were less likely to nurture another's pup they encountered. They were also aggressive toward those pups, as well as among themselves just like wild mice.

The new mouse model created by Kimchi and her team has allowed them to explore, for the first time, the biological roots of aggressive behavior in females, both toward each other, and especially toward the pups of others. It also enabled them to locate a particular gene, which is responsible for the perception of pheromone signals, and to determine this to be the main cause for rejecting a stranger's pup, as well as the aggressive behavior displayed toward them. A pup's mother, it turns out, is the one and only, and stepmothers, naturally, are more aggressive toward others' offspring. Their findings, published in the journal Nature Communications, provide the basis for developing additional mouse strains that will enable a better understanding of the neural and genetic basis of behavior relating to reproduction in females, and the differences between males and females.

Kimchi hopes that further research will lead, in the future, to a renewed understanding of the biological mechanisms underlying social and reproductive processes that have not been possible to explore in standard models of lab mice until now. It may also lead to a better understanding of the social component of neuropsychiatric diseases, which is manifested in different ways in men and women. Such knowledge will contribute to improving the development of drugs targeted to the different sexes, and in particular, will enable an analysis of the effect of certain drugs on women.


'/>"/>

Contact: Yivsam Azgad
news@weizmann.ac.il
972-893-43856
Weizmann Institute of Science
Source:Eurekalert  

Related biology news :

1. Study confirms how the body regulates high levels of CO2 in the blood
2. UCSF: E-cigarettes expose people to more than harmless vapor, should be regulated
3. Researchers identify how zinc regulates a key enzyme involved in cell death
4. New research sheds light on how the body regulates fundamental neuro-hormone
5. FASEB announces 2014 Science Research Conference: Lipid and Lipid Regulated Kinases in Cancer
6. Enlisting cells protein recycling machinery to regulate plant products
7. Peripheral immune system may regulate vulnerability to depression
8. New research shows how heart cells communicate to regulate heart activity
9. USC scientists ID protein that regulates cellular trafficking, potential for anti-cancer therapy
10. Tropical ecosystems regulate variations in Earths carbon dioxide levels
11. Discovery of how a gene that regulates factors involved in bacteria pathogenicity acts
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Pheromones regulate aggression of non-mother female mice toward pups in wild-derived mice
(Date:6/21/2016)... , June 21, 2016 NuData Security announced ... new role of principal product architect and that ... director of customer development. Both will report directly ... officer. The moves reflect NuData,s strategic growth in ... to high customer demand and customer focus values. ...
(Date:6/9/2016)... June 9, 2016 Paris ... Teleste,s video security solution to ensure the safety of people ... during the major tournament Teleste, an international ... and services, announced today that its video security solution will ... to back up public safety across the country. The system ...
(Date:6/2/2016)... -- Perimeter Surveillance & Detection Systems, Biometrics ... Support & Other Service  The latest report ... analysis of the global Border Security market . ... $17.98 billion in 2016. Now: In November ... software and hardware technologies for advanced video surveillance. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016  The Prostate Cancer Foundation (PCF) is pleased ... and faster cures for prostate cancer. Members of the Class of 2016 were ... Read More About the Class of 2016 PCF Young ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, ... of the Supplyframe Design Lab . Located in Pasadena, Calif., the Design ... of how hardware projects are designed, built and brought to market. , The ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
(Date:6/23/2016)... YORK , June 23, 2016 ... trading session at 4,833.32, down 0.22%; the Dow Jones Industrial ... S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), ... Therapeutics Inc. (NASDAQ: BIND ). Learn more about ...
Breaking Biology Technology: