Navigation Links
Phasic firing of dopamine neurons is key to brain's prediction of rewards

San Antonio Researchers are one step closer to understanding the neurobiology that allows people to successfully learn motivated behaviors by associating environmental cues with rewarding outcomes, according to a study published yesterday in the Proceedings of the National Academy of Sciences' online Early Edition. Carlos Paladini, assistant professor of neuroscience at The University of Texas at San Antonio (UTSA) and UTSA graduate student Collin Lobb collaborated with researchers at The University of Washington at Seattle to study the firing patterns of midbrain dopamine neurons in mice during reward-based learning.

"Our research findings provide a direct functional link between the bursting activity of midbrain dopamine neurons and behavior. The research has significant applications for the improvement of health, because the dopamine neurons we are studying are the same neurons that become inactivated during Parkinson's Disease and with the consumption of psychostimulants such as cocaine and amphetamine," said Paladini, who is also a member of UTSA's Neurosciences Institute.

Midbrain dopamine neurons fire in two characteristic modes, tonic and phasic, which are thought to modulate distinct aspects of behavior. When an unexpected reward is presented to an individual, midbrain dopamine neurons fire high frequency bursts of electrical activity. Those bursts of activity allow us to learn to associate the reward with cues in our environment, which may predict similar rewards in the future.

The burst of electrical spikes observed in dopamine neurons is facilitated by a protein called the NMDA receptor, which is expressed on the surface of the dopamine cells. In this study, researchers removed the NMDA receptor from the dopamine cells only, leaving the dopamine neurons unable to fire bursts. The cells would otherwise fire normally.

When researchers placed the mice in reward-based situations, they found that the mice without the NMDA receptor in their dopaminergic neurons could not learn tasks that required them to associate sensory cues with reward. Those same mice, however, were able to learn tasks that did not involve an association with rewards.

"Now that we know NMDA receptors are required for burst firing in dopamine neurons, we need to explore the mechanisms by which NMDA receptor-mediated bursting is regulated or gated," said Lobb, who is currently pursuing his Ph.D. in Neuroscience at UTSA.


Contact: Christi Fish
University of Texas at San Antonio

Related biology news :

1. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
2. Caltech scientists engineer supersensitive receptor, gain better understanding of dopamine system
3. Unlocking mystery of why dopamine freezes Parkinsons patients
4. The birth and death of dopamine neurons: A new model for neurodegeneration
5. Basic guides to PCR, labeling neurons featured in Cold Spring Harbor Protocols
6. ORNL, St. Jude track neurons to predict and prevent disease
7. UCLA stem cells scientists make electrically active motor neurons from iPS cells
8. Researchers generate functional neurons from somatic cells
9. How mirror neurons allow us to learn and socialize by going through the motions in the head
10. Protecting neurons could halt Alzheimers, Parkinsons diseases
11. Mediator in communication between neurons and muscle cells found
Post Your Comments:
(Date:11/17/2015)... EASTON, Mass. , Nov. 17, 2015 ... a leader in the development and sale of broadly ... the worldwide life sciences industry, today announced it has ... of its $5 million Private Placement (the "Offering"), increasing ... to $4,025,000.  One or more additional closings are expected ...
(Date:11/12/2015)... , Nov. 12, 2015  Arxspan has entered ... MIT and Harvard for use of its ArxLab ... management tools. The partnership will support the institute,s ... and chemical research information internally and with external ... used for managing the Institute,s electronic laboratory notebook, ...
(Date:11/10/2015)... 2015  In this report, the biomarkers ... product, type, application, disease indication, and geography. ... are consumables, services, software. The type segments ... efficacy biomarkers, and validation biomarkers. The applications ... development, drug discovery and development, personalized medicine, ...
Breaking Biology News(10 mins):
(Date:11/26/2015)... , November 26, 2015 ... device company specializing in imaging technologies, announced today that it ... as part of the Horizon 2020 European Union Framework Programme ... a large-scale clinical trial in breast cancer. , ... , --> --> The ...
(Date:11/25/2015)... LOS ANGELES and HOLLISTON, Mass. ... Regenerative Technology, Inc. (Nasdaq: HART ), a biotechnology ... announced that CEO Jim McGorry will present ... Tuesday, December 1, 2015 at 2:30 p.m. PT. The ... (link below) for 30 days. Management will also be ...
(Date:11/25/2015)... November 25, 2015 The ... is a professional and in-depth study on the ...      (Logo: ) , ... industry including definitions, classifications, applications and industry chain ... the international markets including development trends, competitive landscape ...
(Date:11/24/2015)... -- Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will be presenting ... on Wednesday, December 2 at 9:30 a.m. ET/6:30 a.m. ... will provide a corporate overview. th Annual Oppenheimer ... p.m. ET/10:00 a.m. PT . Jim Mazzola , vice ... overview. --> th Annual Oppenheimer Healthcare Conference in ...
Breaking Biology Technology: