Navigation Links
Permanent changes in brain genes may not be so permanent after all
Date:1/27/2014

In normal development, all cells turn off genes they don't need, often by attaching a chemical methyl group to the DNA, a process called methylation. Historically, scientists believed methyl groups could only stick to a particular DNA sequence: a cytosine followed by a guanine, called CpG. But in recent years, they have been found on other sequences, and so-called non-CpG methylation has been found in stem cells, and in neurons in the brain.

Now, a team of researchers at Johns Hopkins has discovered that non-CpG methylation occurs later and more dynamically in neurons than previously appreciated, and that it acts as a system of gene regulation, which can be independent of traditional CpG methylation.

In a study described in the January 28 issue of Nature Neuroscience, the Hopkins team describes this new gene control mechanism and how it may contribute to Rett Syndrome, a nervous system disorder affecting mostly girls that causes problems with movement and communication.

The team, led by Hongjun Song, Ph.D., professor of neurology and director of Johns Hopkins Medicine's Institute for Cell Engineering's Stem Cell Program, had found non-CpG methylation prevalent in neurons, a finding that surprised them, since this wasn't found in any other cells besides stem cells.

By looking at what genes were being transcribed in neurons, he and his colleagues found that, like the form of methylation scientists had seen in stem cells, non-CpG methylation stops genes from being expressed. They also mapped the genome to find where non-CpG methylation happens, and found that it carves out its own niche, and are distributed in regions without CpG methlyation. "That was the first hint that maybe it can function independently of CpG methylation," Song says.

The new kind of methylation also seems to operate under different rules. Scientists have long thought methylation was final. Once a cytosine gets a methyl stuck to it, so the story went, that gene is shut off forever. "This became dogma," Song says. "Once cells become the right type, they don't change their identity or DNA methylation."

But non-CpG methylation seems to happen later, when the neuron is matureand even after conventional wisdom said it was irreversible. The researchers learned this from an experiment in which they knocked out in adult mice the enzymes that attach methyl groups to DNA. They found the neurons still had just as much CpG methylation, but the non-CpG methylation dropped off. This suggests that non-CpG methylation is an active process, Song says, with methyl groups continually being taken off and put back on, adding to evidence that non-CpG methylation may play more of a role in managing operations in mature cells.

The researchers also found a way that non-CpG methylation is similar to CpG methylation in one important way: it's read by MeCP2, an enzyme long identified as a player in methylation.

That's significant because a mutation in MeCP2 causes Rett Syndrome, and understanding DNA methylation is key to understanding this syndrome. The disorder occurs, Song says, when working copies of the gene for MeCP2 are silenced during development.


'/>"/>

Contact: Vanessa McMains
vmcmain1@jhmi.edu
410-502-9410
Johns Hopkins Medicine
Source:Eurekalert

Related biology news :

1. Geologists testing aquifer rocks as containers to permanently trap carbon dioxide
2. Pregnancy permanently changes foot size
3. Kaiser Permanentes Robert Mangel to Speak at Rock Stars of Big Data: Register Now to Reserve Your Space
4. Brief exposure to performance-enhancing drugs may be permanently remembered by muscles
5. Stanford scientists probe abandoned mine for clues about permanent CO2 sequestration
6. Holding a mirror to brain changes in autism
7. How old are these rocks, how were they made, and how long ago did these geologic changes happen?
8. Scientists find that neurological changes can happen due to social status
9. Changes in brains blood flow could cause brain freeze
10. Air pollution level changes in Beijing linked with biomarkers of cardiovascular disease
11. Nature: Molecule changes magnetism and conductance
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/30/2017)... 30, 2017 Trends, opportunities and forecast in ... by technology (fingerprint, AFIS, iris recognition, facial recognition, hand ... by end use industry (government and law enforcement, commercial ... banking, and others), and by region ( North ... Asia Pacific , and the Rest of ...
(Date:3/27/2017)... 2017  Catholic Health Services (CHS) has been ... (HIMSS) Analytics for achieving Stage 6 on the ... In addition, CHS previously earned a place in ... electronic medical record (EMR). "HIMSS Analytics ... EMR usage in an outpatient setting.  This recognition ...
Breaking Biology News(10 mins):
(Date:5/21/2017)... ... May 20, 2017 , ... ... the lengthy trial and error process by finding the right antidepressant faster. ... strengthen the doctor-patient relationship through a personalized approach to treatment. , ...
(Date:5/18/2017)... (PRWEB) , ... May 18, 2017 , ... ... procedure on April 28, 2017 at the Prince Of Wales Private Hospital. The ... disc at level C6-C7. The patient failed conservative treatments prior to undergoing surgery. ...
(Date:5/18/2017)... , ... May 17, 2017 , ... NDA Partners Chairman ... and former CEO of Eurofins Advantar Laboratories and President of Pharmaceutical Development Business Unit ... his position at Eurofins and Cardinal Health, he was former Chief Operating Officer at ...
(Date:5/18/2017)... ... May 17, 2017 , ... USDM Life Sciences ... the life sciences and healthcare industries, is honored that Jay Crowley ... conference in Brussels, Belgium. , Crowley played a crucial role in the development ...
Breaking Biology Technology: