Navigation Links
Perfect micro rings woven from muscle fibers

This release is available in German.

Supplied with sufficient energy, a freight train would ride the rails as far as they go. But nature also knows systems whose dynamics suddenly turn into a kind of endless loop. Like in a hamster wheel, a train caught up in such a system would continue running, but without moving forward. Scientists from the Cluster of Excellence Nanosystems Initiative Munich have now succeeded in building a simple model system consisting of only three components to study the laws of such so-called absorbing states.

Scientists speak of an active system when a system continuously consumes energy. Active systems are all around us, anything from simple machines to highly developed creatures. However, our knowledge and understanding of these systems are still very limited. We often find complex phenomena where we would actually have expected simple patterns.

This is exactly is what happened to a team of physicists headed by the Nano Initiative Munich (NIM) scientist Andreas Bausch, biophysics professor at the Technische Universitaet Muenchen (TUM) and Professor Erwin Frey, biophysicist at the Ludwig Maximilian University Munich (LMU). They investigated how fibers made of the muscle protein actin behave when they are transported and cross-linked at the same time. The physicists discovered that at a certain point the system suddenly entered a so-called absorbing state, albeit without ceasing to consume energy.

Scientists refer to a state that a system that cannot escape from as an absorbing state. The model system used by the researchers comprises merely three components: the muscle protein actin, motor proteins responsible for transport and movement in cells and fascin molecules that cross-link the actin fibers. Using this simple and easily controllable model allows the scientists to investigate the fundamental principles of absorbing states.

In the experiment, millions of biological motor proteins anchored on a glass surface are responsible for transporting the actin fibers. They are the active components in the model system. After adding adenosine triphosphate (ATP), the "fuel" for the motor proteins, the fibers begin to move randomly. Next the researchers added cross-linking molecules to connect the fibers. This leads to the formation of ever-larger structures that move around on the substrate. Ultimately, all fibers are incorporated into large structures. However, these structures are no longer able to move freely across the surface. They are now fixed in place and run in circles the system is trapped in an absorbing state.

Surprisingly, the structures that develop are quite complex. The result is a collection of perfectly shaped rings made up of millions of individual fibers that rotate permanently under the influence of the motor proteins. "The amazing thing is not only the complexity of the structures themselves, but the fact that even such a simple system comprising only three components fibers, motor proteins and cross-linking molecules can run into an absorbing state," says Volker Schaller from the Institute of Cellular Biophysics at TUM, lead author of the work.

"Such a minimal system should allow us to understand the experimental results using theoretical models," adds Christopher Weber from the Department of Statistical and Biological Physics of LMU Munich. He collaborates with Professor Frey on theoretical concepts to describe active systems. Through their cooperation they successfully uncovered the underlying principles of the ring formation. Specifically, they were able to attribute the rings' properties, such as size and shape, to random movements on a molecular level.

"The mesmerizing thing about the model system, aside from the fascination evoked by the almost perfect patterns, is a seeming contradiction," says the biophysicist Andreas Bausch. An active system is able to enter an absorbing state, although it continues to consume energy. "For the system, an absorbing state is like a dead-end street: once part of the system walks into the dead-end, there is no more escape," says Bausch. Such absorbing states can be found in countless active systems, including far more complex ones, e.g. those found the growth of competing cell populations.

A central question is whether the dynamics of all these systems adhere to the same fundamental laws. According to Frey, this is one of the big open questions in the physics of complex systems. "A model systems comprising only a few elements is ideally suited to answer this kind of question," the Munich physicist emphasizes.


Contact: Dr. Andreas Battenberg
Technische Universitaet Muenchen

Related biology news :

1. Manchesters first step to perfect drug combinations
2. Solving the riddle of natures perfect spring
3. Why (smart) practice makes perfect
4. Saint Louis University investigators perfect new version of blood-regulator thrombin
5. Flus evolution strategy strikes perfect balance
6. Plastic Surgeons Rate Auction of World-Class Florida Laterra Spa May 21 a Perfect 10, Great Business Opp for Celebrity Retreat
7. TransPerfect Acquires Astoria Software
8. Study uses Chinese wolfberries to improve vision imperfections caused by type-2 diabetes
9. Perfect peas to push profits and cut carbon
10. To a mosquito, matchmaking means singing in perfect harmony
11. Dinosaur fossils fit perfectly into the evolutionary tree of life
Post Your Comments:
Related Image:
Perfect micro rings woven from muscle fibers
(Date:11/26/2015)... DUBLIN , Nov. 26, 2015 Research ... of the "Capacitive Fingerprint Sensors - Technology and ... --> --> ... market, especially in smartphones. The fingerprint sensor vendor Idex ... fingerprint sensor units in mobile devices and of the ...
(Date:11/20/2015)... 20, 2015 NXTD ) ("NXT-ID" ... the growing mobile commerce market and creator of the ... , was recently interviewed on The RedChip Money ... this weekend on Bloomberg Europe , Bloomberg Asia, ... --> NXTD ) ("NXT-ID" or the "Company"), a ...
(Date:11/19/2015)... Nov. 19, 2015  Based on its in-depth analysis ... recognizes BIO-key with the 2015 Global Frost & Sullivan ... & Sullivan presents this award to the company that ... the needs of the market it serves. The award ... and expands on customer base demands, the overall impact ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 2015 The Global Genomics ... professional and in-depth study on the current state ... ) , The report ... definitions, classifications, applications and industry chain structure. The ... markets including development trends, competitive landscape analysis, and ...
(Date:11/24/2015)... Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ... New York on Wednesday, December 2 at ... , president and CEO, will provide a corporate overview. ... at 1:00 p.m. ET/10:00 a.m. PT . ... will provide a corporate overview. --> th Annual ...
(Date:11/24/2015)... , Nov. 24, 2015  Clintrax Global, Inc., a worldwide ... Carolina , today announced that the company has set a ... a 391% quarter on quarter growth posted for Q3 of 2014 ... and Mexico , with the establishment of ... December 2015. --> United Kingdom and ...
(Date:11/24/2015)... --> --> ... by Transparency Market Research, the global non-invasive prenatal testing ... 17.5% during the period between 2014 and 2022. The ... Analysis, Size, Volume, Share, Growth, Trends and Forecast 2014 ... to reach a valuation of US$2.38 bn by 2022. ...
Breaking Biology Technology: