Navigation Links
Penn researchers help graft olfactory receptors onto nanotubes
Date:7/26/2011

PHILADELPHIA Penn researchers have helped develop a nanotech device that combines carbon nanotubes with olfactory receptor proteins, the cell components in the nose that detect odors.

Because olfactory receptors belong to a larger class of proteins that are involved in passing signals through the cell membrane, these devices could have applications beyond odor sensing, such as pharmaceutical research.

The research was led by professor A. T. Charlie Johnson, postdoctoral fellow Brett R. Goldsmith and graduate student Mitchell T. Lerner of the Department of Physics and Astronomy in the School of Arts and Sciences, along with assistant professor Bohdana M. Discher and postdoctoral fellow Joseph J. Mitala Jr. of the Department of Biophysics and Biochemistry at Penn's Perelman School of Medicine. They collaborated with researchers from the Monell Chemical Senses Center, the University of Miami, the University of Illinois, Princeton University and two private companies, Nanosense Inc. and Evolved Machines Inc.

Their work was published in the journal ACS Nano.

The Penn team worked with olfactory receptors derived from mice, but all olfactory receptors are part of a class of proteins known as G Protein Coupled Receptors, or GPCRs. These receptors sit on the outer membrane of cells, where certain chemicals in the environment can bind to them. The binding action is the first step in a chemical cascade that leads to a cellular response; in the case of an olfactory receptor, this cascade leads to the perception of a smell.

The Penn team succeeded in building an interface between this complicated protein and a carbon nanotube transistor, allowing them to convert the chemical signals the receptor normally produces to electrical signals, which could be incorporated in any number of tools and gadgets.

"Our nanotech devices are read-out elements; they eavesdrop on what the olfactory receptors are doing, specifically what molecules are bound to them," Johnson said.

As the particular GPCR the team worked with was an olfactory receptor, the test case for their nanotube device was to function as sensor for airborne chemicals.

"If there's something in the atmosphere that wants to bind to this molecule, the signal we get through the nanotube is about what fraction of the time is something bound or not. That means we can get a contiguous read out that's indicative of the concentration of the molecule in the air," Johnson said.

While one could imagine scaling up these nanotube devices into a synthetic nose making one for each of the approximately 350 olfactory GPCRs in a human nose, or the 1,000 found in a dog's Johnson thinks that medical applications are much closer to being realized.

"GPCRs are common drug targets," he said. "Since they are known to be very important in cell-environment interactions, they're very important in respect to disease pathology. In that respect, we now have a pathway into interrogating what those GPCRs actually respond to. You can imagine building a chip with many of these devices, each with different GPCRs, and exposing them all at once to various drugs to see which is effective at triggering a response."

Figuring out what kinds of drugs bind most effectively to GPCRs is important because pathogens often attack through those receptors as well. The better a harmless chemical attaches to a relevant GPCR, the better it is at blocking the disease.

The Penn team also made a technical advancement in stabilizing GPCRs for future research.

"In the past, if you take a protein out of a cell and put it onto a device, it might last for a day. But here, we embedded it in a nanoscale artificial cell membrane, which is called a nanodisc," Johnson said. "When we did that, they lasted for two and half months, instead of a day."

Increasing the lifespans of such devices could be beneficial to two scientific fields with increasing overlap, as the as evidenced by the large, interdisciplinary research team involved in the study.

"The big picture is integrating nanotechnology with biology, " Johnson said. "These complicated molecular machines are the prime method of communication between the interior of the cell and the exterior, and now we're incorporating their functionality with our nanotech devices."


'/>"/>

Contact: Evan Lerner
elerner@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert

Related biology news :

1. U of M researchers may have discovered key to help women fight infections during pregnancy
2. Behavior 2011 to draw global contingent of more than 1,100 animal researchers to IU next week
3. U of M researchers discover gene required to maintain male sex throughout life
4. Caltech researchers create the first artificial neural network out of DNA
5. Western researchers receive $600,000 to study Prion diseases and Alzheimers
6. Researchers find potential key for unlocking biomass energy
7. Researchers present new trends in HIV cure research, call for proactive outreach programs to prevent HIV transmission in injecting drug users, and demand increased commitments to improving maternal and child health
8. E-health records should play bigger role in patient safety initiatives, researchers advocate
9. John Theurer Cancer Center researchers shared 14 leading edge studies at recent ASCO meeting
10. Researchers provide means of monitoring cellular interactions
11. USC researchers explore the source of empathy in the brain
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/11/2016)... Feb. 11, 2016  Vigilant Solutions announces today that its ... being used by Lee,s Summit Police ... location and arrest of a homicide suspect. ... covers around 65 square miles and is home to roughly ... has a single mobile license plate reader system and also ...
(Date:2/10/2016)... February 10, 2016 ... to 2016 iris recognition market report, combined ... is more widely accepted for border control. ... fingerprint and iris recognition technology in a ... avoid purchasing two individual biometrics devices. ...
(Date:2/9/2016)... AWRE ), a leading supplier of biometrics software and services, ... December 31, 2015.  --> --> ... an increase of 61% compared to $4.3 million in the same ... was $2.6 million compared to $0.2 million in the fourth quarter ... Higher revenue and operating income in the fourth quarter of this ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... Feb. 11, 2016  Vermillion, Inc. (NASDAQ: VRML ... today announced the formation of the Steering Committee for ... --> Pelvic masses can present physicians ... management. Once pregnancy is ruled out, pelvic masses may ... advanced endometriosis, benign ovarian tumors and gastrointestinal and urinary ...
(Date:2/11/2016)... Germany and GERMANTOWN, Maryland ... ; Frankfurt Prime Standard: QIA) today announced the introduction ... for gene expression profiling, expanding QIAGEN,s portfolio of Sample ... enable researchers to select from over 20,000 human genes ... interactions between genes, cellular phenotypes and disease processes. ...
(Date:2/11/2016)...  Bioethics International, a not-for-profit organization focused on the ethics ... made accessible to patients around the world, today announced that ... publication of the Good Pharma Scorecard an ... as one of BMJ Open ,s ,Most Popular Articles, ... most frequently read. Ed Sucksmith , assistant editor ...
(Date:2/11/2016)... , Feb. 11, 2016  Spectra BioPharma Selling Solutions ... that provides biopharma companies the experience, expertise, operational ... deploy outsourced sales teams. Created in concert with ... both the strategic and tactical needs of its ... solutions through both personal and non-personal promotion. ...
Breaking Biology Technology: