Navigation Links
Penn molecular scientists develop color-changing stress sensor
Date:8/18/2011

PHILADELPHIA It is helpful even life-saving to have a warning sign before a structural system fails, but, when the system is only a few nanometers in size, having a sign that's easy to read is a challenge. Now, thanks to a clever bit of molecular design by University of Pennsylvania and Duke University bioengineers and chemists, such warning can come in the form of a simple color change.

The study was conducted by professor Daniel Hammer and graduate students Neha Kamat and Laurel Moses of the Department of Bioengineering in Penn's School of Engineering and Applied Science. They collaborated with associate professor Ivan Dmochowski and graduate student Zhengzheng Liao of the Department of Chemistry in Penn's School of Arts and Sciences, as well as professor Michael Therien and graduate student Jeff Rawson of Duke.

Their work was published in the journal Proceedings of the National Academy of Sciences.

The researchers' work involves two molecules: porphyrins, a class of naturally occurring pigments, and polymersomes, artificially engineered capsules that can carry a molecular payload in their hollow interiors. In this case, Kamat and Liao hypothesized that polymersomes could be used as stress sensors if their membranes were embedded with a certain type of light-emitting porphyrins.

The Penn researchers collaborated with the Therien lab, where the porphyrins were originally developed, to design polymersomes that were studded with the light-emitting molecules. When light is shined on these labeled polymersomes, the porphyrins absorb the light and then release it at a specific wavelength, or color. The Therien lab's porphyrins play a critical role in using the polymersomes as stress sensors, because their configuration and concentration controls the release of light.

"When you package these porphyrins in a confined environment, such as a polymersome membrane, you can modulate the light emission from the molecules," Hammer said. "If you put a stress on the confined environment, you change the porphyrin's configuration, and, because their optical release is tied to their configuration, you can use the optical release as a direct measure of the stress in the environment."

For example, the labeled polymersomes could be injected into the blood stream and serve as a proxy for neighboring red blood cells. As both the cells and polymersomes travel through an arterial blockage, for example, scientists would be able to better understand what happens to the blood cell membranes by making inferences from the stress label measurements.

The researchers calibrated the polymersomes by subjecting them to several kinds of controlled stresses tension and heat, among others and measuring their color changes. The changes are gradations of the near infrared spectrum, so measurements must be made by computers, rather than the naked eye. Rapidly advancing body-scanning technology, which uses light rather than magnetism or radiation, is well suited to this approach.

Other advances in medicine could benefit, as well. As cutting-edge pharmaceutical approaches already use similar molecular technology, the researchers' porphyrin labeling system could be integrated into medicine-carrying polymersomes.

"These kinds of tools could be used to monitor drug delivery, for example," Kamat said. "If we have a way to see how stressed the container is over time, we know how much of the drug has come out."

And, though the researchers chose the engineered polymersomes due to the wide range of stress they can endure, the same stress-labeling technique could soon be applied directly to naturally occurring tissues.

"One future application for this is to use dyes like these porphyrins but include them directly in a cellular membranes," Kamat said. "No one has taken a look at the intrinsic stress inside a membrane so these molecules would be perfect for the job."


'/>"/>

Contact: Evan Lerner
elerner@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert  

Related biology news :

1. SNM releases new fact sheet on breast cancer and molecular imaging
2. Genetic Engineering & Biotechnology News reports on growing role of molecular diagnostics
3. A new journal where molecular biology meets clinical research
4. Scientists trace molecular origin of proportional development
5. New molecular insight into vertebrate brain development
6. Plants display molecular amnesia
7. Pitt, NETL researchers report molecular chain reaction thought to be impossible
8. Tracking the molecular pathway to mixed-lineage leukemia
9. Researchers compile molecular manual for 100s of inherited diseases
10. Biologists learn structure, mechanism of powerful molecular motor in virus
11. Phoenix conference highlights TGens and Scottsdale Healthcares contributions to molecular oncology
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Penn molecular scientists develop color-changing stress sensor
(Date:2/28/2017)... , Feb. 28, 2017   Acuant , a ... globally, announces significant enhancements to new and core technologies ... New products include mobile and desktop Acuant FRM TM ... - a real time manual review of identity ... technology provides the fastest and most accurate capture software ...
(Date:2/26/2017)... -- Securus Technologies, a leading provider of civil and ... corrections and monitoring, announces the appointment of a ... often, too many offenders return to jail or ... to tackle this ongoing problem and improve the ... significant steps are underway, Securus continues to invest ...
(Date:2/21/2017)... -- Der weltweite Biobanking-Sektor wird bis zum ... mit mehr als 50 Vertretern aus verschiedenen Branchen wurde aber ... diese Prognose zu realisieren. ... Zu den Schwierigkeiten für ... für die Biobank, die Implementierung Zeit sparender Technologien, ein ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... Oakland, California (PRWEB) , ... March 28, 2017 , ... ... that its flagship product, AllegroGraph , has been named a ‘Champion’ by Bloor ... “AllegroGraph is the highest ranked product in its class, and, thanks to Gruff, it ...
(Date:3/28/2017)... WASHINGTON , March 28, 2017  (AACR17, Booth ... sequencing during the American Association for Cancer Research (AACR) ... in Washington, D.C. , April 1-5, ... expression of thousands of cells at the individual level. ... Experts on-hand at AACR to discuss expanded next ...
(Date:3/28/2017)... HOLLISTON, Mass. , March 28, 2017 ... "Company"), a biotechnology company developing bioengineered organ implants to ... bronchus and trachea, today announced that Jim McGorry, ... 3D Printing and BioEngineering panel at the ... 2017 at 2:30 PM ET in Cambrige, Massachussetts. The ...
(Date:3/28/2017)... 2017 /PRNewswire/ -RepliCel Life Sciences Inc. (OTCQB: REPCF) (TSXV: RP) ... safety and clinical data from its phase 1/2 tendon repair ... follicle-derived fibroblasts (RCT-01) as a treatment for Achilles tendinosis. ... The ... profile at 6 months and showed no serious adverse events ...
Breaking Biology Technology: