Navigation Links
Peering inside the skull of a mouse to solve meningitis mystery
Date:12/22/2008

NEW YORK, Dec. 22, 2008 NYU Langone Medical Center scientists and their collaborators at the Scripps Research Institute in La Jolla, Calif., have discovered an unexpected cause for the fatal seizures seen in mice with viral meningitis, an infection of the central nervous system, according to a study published in the journal Nature. The finding may lead to a new way of thinking about how the human immune system responds to viral diseases.

The NYU researchers, Michael L. Dustin, Ph.D., the Irene Diamond Professor of Immunology and Professor of Pathology at NYU School of Medicine, and Jiyun V. Kim, Ph.D., a scientist in Dr. Dustin's laboratory, employed intravital two-photon microscopy to peer inside the skulls of infected mice. This breakthrough technology allows scientists to take moving pictures of immune cells in action. The cells are tagged with a protein that glows fluorescent green when activated by infrared light, which is able to penetrate living tissue without damaging it.

Drs. Dustin and Kim collaborated with Dorian McGavern, Ph.D., Associate Professor of Immunology and Silvia Kang, Ph.D., at Scripps Research Institute, who provided virology expertise and performed many critical experiments that supported the unexpected findings of the study.

A Disease Driven by the Immune System

The scientists used lymphocytic choriomeningitis virus (LCMV), which is relatively harmless in humans with a healthy immune system. Other viruses that cause meningitis usually are associated with mild symptoms. By contrast, bacterial meningitis is a much more contagious and serious disease, particularly in young children. If not treated promptly with antibiotics, it may lead to hearing loss, brain damage, and even death.

Mice infected with LCMV suffer fatal seizures. It was known that these seizures are not caused by the virus itself, but by the immune system's response to the infection. Something sets off a chain of events that begins with leakage of fluid from blood vessels into the meninges, the protective covering of the brain and spinal cord, followed by swelling, which in turn leads to seizures. "T-cells, which are designed to attack the virus, were thought to be the bad guys, but no one understood the exact cellular dynamics involved in infection-induced seizures," explains Dr. Kim, who did the intravital two-photon microscopic imaging in the study, which will be published in the January 8, 2009, issue of Nature. It appeared online last month.

This sort of overreaction by immune cells, called immunopathology, is a factor in numerous conditions in humans, ranging from allergies and autoimmune diseases to stroke and viral infections.

High-Tech Imaging Shows Cells in Action

As the NYU researchers watched the behavior of the T-cells, they noticed something strange. Rather than attacking cells infected with the virus, the T-cells wandered around, apparently unable to recognize their targets. "Up to a point, the T-cells did everything they should do," Dr. Dustin explains. "They made copies of themselves and migrated to where the virus was, but when they got there, they couldn't do the right thing. At least they didn't do what we expected them to, which was to stick tightly to the infected cells."

Intravital two-photon microscopy employs an oscillating infrared laser yielding high-resolution moving pictures. Immune cells appear as bright green lights in the tissue covering the brain of a living mouse. Using surgical methods perfected by at NYU's Skirball Institute for Biomolecular Medicine by Wen Biao Gan, Ph.D., the microscopy produces time-lapse "movies," capturing activity that is not evident in still images made from slices of tissue viewed on a microscope slide.

"A series of frozen images gave the misleading impression that the T-cells were engaging with the infected cells, but intravital microscopy clearly showed that the immune cells appeared to overrun the infected cells", notes Dr. Dustin.

The wrong cells in the wrong place at the wrong time

This observation provided the first clue that T-cells could not be causing fluid to leak from the blood vessels into the meninges. If T-cells weren't the culprit, what was? Another series of experiments revealed that the real villains were monocytes and neutrophils, two types of white blood cells that usually fight bacteria, not viruses. Intravital microscopy showed massive numbers of these white blood cells breaking through the walls of blood vessels into the meninges, opening the floodgates for fluid to pour out and cause swelling.

Unable to kill the virally infected cells, the T-cells appeared to be summoning monocytes and neutrophils to the site of infection, like a sergeant calling out the cavalry. In this case, however, it was the wrong call. Although many questions remain, "we've discovered a totally new targetthe neutrophils and monocytes recruited by the T-cells," Dr. Dustin says. "If you can prevent that recruitment process, either by inhibiting the T-cells or, preferably, inhibiting the monocytes and neutrophils, you can probably prevent the disease."

om allergies and autoimmune diseases to stroke and viral infections.

High-Tech Imaging Shows Cells in Action

As the NYU researchers watched the behavior of the T-cells, they noticed something strange. Rather than attacking cells infected with the virus, the T-cells wandered around, apparently unable to recognize their targets. "Up to a point, the T-cells did everything they should do," Dr. Dustin explains. "They made copies of themselves and migrated to where the virus was, but when they got there, they couldn't do the right thing. At least they didn't do what we expected them to, which was to stick tightly to the infected cells."

Intravital two-photon microscopy employs an oscillating infrared laser yielding high-resolution moving pictures. Immune cells appear as bright green lights in the tissue covering the brain of a living mouse. Using surgical methods perfected by at NYU's Skirball Institute for Biomolecular Medicine by Wen Biao Gan, Ph.D., the microscopy produces time-lapse "movies," capturing activity that is not evident in still images made from slices of tissue viewed on a microscope slide.

"A series of frozen images gave the misleading impression that the T-cells were engaging with the infected cells, but intravital microscopy clearly showed that the immune cells appeared to overrun the infected cells", notes Dr. Dustin.

The wrong cells in the wrong place at the wrong time

This observation provided the first clue that T-cells could not be causing fluid to leak from the blood vessels into the meninges. If T-cells weren't the culprit, what was? Another series of experiments revealed that the real villains were monocytes and neutrophils, two types of white blood cells that usually fight bacteria, not viruses. Intravital microscopy showed massive numbers of these white blood cells breaking through the walls of blood vessels into the meninges, opening the floodgates for fluid to pour out and cause swelling.

Unable to kill the virally infected cells, the T-cells appeared to be summoning monocytes and neutrophils to the site of infection, like a sergeant calling out the cavalry. In this case, however, it was the wrong call. Although many questions remain, "we've discovered a totally new targetthe neutrophils and monocytes recruited by the T-cells," Dr. Dustin says. "If you can prevent that recruitment process, either by inhibiting the T-cells or, preferably, inhibiting the monocytes and neutrophils, you can probably prevent the disease."


'/>"/>

Contact: Lordina Klein
Lorindaann.Klein@nyumc.org
212-404-3555
NYU Langone Medical Center / New York University School of Medicine
Source:Eurekalert

Related biology news :

1. Study finds blocking angiogenesis signaling from inside cell may lead to serious health problems
2. One species entire genome discovered inside anothers
3. Inside the brain of a crayfish
4. New approach builds better proteins inside a computer
5. Glue inside the cell
6. Nanotechnology and the media: The inside story
7. A chilling glimpse inside the minds of dangerous criminals
8. Scientists discover DNA knot keeps viral genes tightly corked inside shell
9. Kids: Book features inside scoop on soil
10. Improving our ability to peek inside molecules
11. Red-eyed treefrog embryos actively avoid asphyxiation inside their eggs
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/15/2016)... -- Research and Markets has announced the addition of ... to their offering. ... The global bioinformatics ... USD 6.21 Billion in 2016, growing at a CAGR of 21.1% ... market is driven by the growing demand for nucleic acid and ...
(Date:6/27/2016)... Research and Markets has announced the addition of the ... offering. The report forecasts the ... at a CAGR of 12.28% during the period 2016-2020. ... analysis with inputs from industry experts. The report covers the market ... also includes a discussion of the key vendors operating in this ...
(Date:6/22/2016)... , June 22, 2016 On Monday, ... call to industry to share solutions for the Biometric ... U.S. Customs and Border Protection (CBP), explains that CBP ... are departing the United States , ... and to defeat imposters. Logo - ...
Breaking Biology News(10 mins):
(Date:12/5/2016)... 2016 NxGen MDx announced today that it brought its NxGen ... we,ve been able to improve customer service through shortened turnaround times and ... Mack , CEO of NxGen MDx. ... , A decrease in turnaround times ... more job opportunities at the Grand Rapid headquarters. The NxGen ...
(Date:12/5/2016)... Research and Markets has announced the ... Technologies, Markets and Companies" to their offering. ... , , ... human genome variations, development of sequencing technologies, and their applications. ... companies developing them. Various applications of sequencing are described including ...
(Date:12/4/2016)... ... 02, 2016 , ... A proposed five-year extension for programs ... research and development is welcome news for the photonics community, say leaders of ... part of the National Defense Authorization Act (NDAA) compromise agreement finalized today between ...
(Date:12/4/2016)... Dec. 3, 2016  In five studies being presented ... Annual Meeting and Exposition in San Diego ... to improve the delivery of life-saving treatments to patients ... are designed to carry therapies directly to the sites ... could provide a substantial advantage over traditional, systemic methods. ...
Breaking Biology Technology: