Navigation Links
Peering inside the skull of a mouse to solve meningitis mystery
Date:12/22/2008

NEW YORK, Dec. 22, 2008 NYU Langone Medical Center scientists and their collaborators at the Scripps Research Institute in La Jolla, Calif., have discovered an unexpected cause for the fatal seizures seen in mice with viral meningitis, an infection of the central nervous system, according to a study published in the journal Nature. The finding may lead to a new way of thinking about how the human immune system responds to viral diseases.

The NYU researchers, Michael L. Dustin, Ph.D., the Irene Diamond Professor of Immunology and Professor of Pathology at NYU School of Medicine, and Jiyun V. Kim, Ph.D., a scientist in Dr. Dustin's laboratory, employed intravital two-photon microscopy to peer inside the skulls of infected mice. This breakthrough technology allows scientists to take moving pictures of immune cells in action. The cells are tagged with a protein that glows fluorescent green when activated by infrared light, which is able to penetrate living tissue without damaging it.

Drs. Dustin and Kim collaborated with Dorian McGavern, Ph.D., Associate Professor of Immunology and Silvia Kang, Ph.D., at Scripps Research Institute, who provided virology expertise and performed many critical experiments that supported the unexpected findings of the study.

A Disease Driven by the Immune System

The scientists used lymphocytic choriomeningitis virus (LCMV), which is relatively harmless in humans with a healthy immune system. Other viruses that cause meningitis usually are associated with mild symptoms. By contrast, bacterial meningitis is a much more contagious and serious disease, particularly in young children. If not treated promptly with antibiotics, it may lead to hearing loss, brain damage, and even death.

Mice infected with LCMV suffer fatal seizures. It was known that these seizures are not caused by the virus itself, but by the immune system's response to the infection. Something sets off a chain of events that begins with leakage of fluid from blood vessels into the meninges, the protective covering of the brain and spinal cord, followed by swelling, which in turn leads to seizures. "T-cells, which are designed to attack the virus, were thought to be the bad guys, but no one understood the exact cellular dynamics involved in infection-induced seizures," explains Dr. Kim, who did the intravital two-photon microscopic imaging in the study, which will be published in the January 8, 2009, issue of Nature. It appeared online last month.

This sort of overreaction by immune cells, called immunopathology, is a factor in numerous conditions in humans, ranging from allergies and autoimmune diseases to stroke and viral infections.

High-Tech Imaging Shows Cells in Action

As the NYU researchers watched the behavior of the T-cells, they noticed something strange. Rather than attacking cells infected with the virus, the T-cells wandered around, apparently unable to recognize their targets. "Up to a point, the T-cells did everything they should do," Dr. Dustin explains. "They made copies of themselves and migrated to where the virus was, but when they got there, they couldn't do the right thing. At least they didn't do what we expected them to, which was to stick tightly to the infected cells."

Intravital two-photon microscopy employs an oscillating infrared laser yielding high-resolution moving pictures. Immune cells appear as bright green lights in the tissue covering the brain of a living mouse. Using surgical methods perfected by at NYU's Skirball Institute for Biomolecular Medicine by Wen Biao Gan, Ph.D., the microscopy produces time-lapse "movies," capturing activity that is not evident in still images made from slices of tissue viewed on a microscope slide.

"A series of frozen images gave the misleading impression that the T-cells were engaging with the infected cells, but intravital microscopy clearly showed that the immune cells appeared to overrun the infected cells", notes Dr. Dustin.

The wrong cells in the wrong place at the wrong time

This observation provided the first clue that T-cells could not be causing fluid to leak from the blood vessels into the meninges. If T-cells weren't the culprit, what was? Another series of experiments revealed that the real villains were monocytes and neutrophils, two types of white blood cells that usually fight bacteria, not viruses. Intravital microscopy showed massive numbers of these white blood cells breaking through the walls of blood vessels into the meninges, opening the floodgates for fluid to pour out and cause swelling.

Unable to kill the virally infected cells, the T-cells appeared to be summoning monocytes and neutrophils to the site of infection, like a sergeant calling out the cavalry. In this case, however, it was the wrong call. Although many questions remain, "we've discovered a totally new targetthe neutrophils and monocytes recruited by the T-cells," Dr. Dustin says. "If you can prevent that recruitment process, either by inhibiting the T-cells or, preferably, inhibiting the monocytes and neutrophils, you can probably prevent the disease."

om allergies and autoimmune diseases to stroke and viral infections.

High-Tech Imaging Shows Cells in Action

As the NYU researchers watched the behavior of the T-cells, they noticed something strange. Rather than attacking cells infected with the virus, the T-cells wandered around, apparently unable to recognize their targets. "Up to a point, the T-cells did everything they should do," Dr. Dustin explains. "They made copies of themselves and migrated to where the virus was, but when they got there, they couldn't do the right thing. At least they didn't do what we expected them to, which was to stick tightly to the infected cells."

Intravital two-photon microscopy employs an oscillating infrared laser yielding high-resolution moving pictures. Immune cells appear as bright green lights in the tissue covering the brain of a living mouse. Using surgical methods perfected by at NYU's Skirball Institute for Biomolecular Medicine by Wen Biao Gan, Ph.D., the microscopy produces time-lapse "movies," capturing activity that is not evident in still images made from slices of tissue viewed on a microscope slide.

"A series of frozen images gave the misleading impression that the T-cells were engaging with the infected cells, but intravital microscopy clearly showed that the immune cells appeared to overrun the infected cells", notes Dr. Dustin.

The wrong cells in the wrong place at the wrong time

This observation provided the first clue that T-cells could not be causing fluid to leak from the blood vessels into the meninges. If T-cells weren't the culprit, what was? Another series of experiments revealed that the real villains were monocytes and neutrophils, two types of white blood cells that usually fight bacteria, not viruses. Intravital microscopy showed massive numbers of these white blood cells breaking through the walls of blood vessels into the meninges, opening the floodgates for fluid to pour out and cause swelling.

Unable to kill the virally infected cells, the T-cells appeared to be summoning monocytes and neutrophils to the site of infection, like a sergeant calling out the cavalry. In this case, however, it was the wrong call. Although many questions remain, "we've discovered a totally new targetthe neutrophils and monocytes recruited by the T-cells," Dr. Dustin says. "If you can prevent that recruitment process, either by inhibiting the T-cells or, preferably, inhibiting the monocytes and neutrophils, you can probably prevent the disease."


'/>"/>

Contact: Lordina Klein
Lorindaann.Klein@nyumc.org
212-404-3555
NYU Langone Medical Center / New York University School of Medicine
Source:Eurekalert

Related biology news :

1. Study finds blocking angiogenesis signaling from inside cell may lead to serious health problems
2. One species entire genome discovered inside anothers
3. Inside the brain of a crayfish
4. New approach builds better proteins inside a computer
5. Glue inside the cell
6. Nanotechnology and the media: The inside story
7. A chilling glimpse inside the minds of dangerous criminals
8. Scientists discover DNA knot keeps viral genes tightly corked inside shell
9. Kids: Book features inside scoop on soil
10. Improving our ability to peek inside molecules
11. Red-eyed treefrog embryos actively avoid asphyxiation inside their eggs
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or the ... Annual Report on Form 10-K on Thursday April 13, 2017 with ... ... Relations section of the Company,s website at http://www.nxt-id.com  under "SEC ... . 2016 Year Highlights: Acquisition ...
(Date:4/11/2017)... DUBLIN , Apr. 11, 2017 Research ... Tracking Market 2017-2021" report to their offering. ... The global eye tracking market to grow at ... The report, Global Eye Tracking Market 2017-2021, has been prepared based ... report covers the market landscape and its growth prospects over the ...
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... Palo Alto, CA, USA (PRWEB) , ... October 11, 2017 , ... ... is set to take place on 7th and 8th June 2018 in San Francisco, ... and policy influencers as well as several distinguished CEOs, board directors and government officials ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... Disappearing forests ... the lives of over 5.5 million people each year. Especially those living in larger ... startup Treepex - based in one of the most pollution-affected countries globally - decided ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... SomaGenics announced the receipt of a Phase ... (Single Cell), expected to be the first commercially available ... from single cells using NGS methods. The NIH,s recent ... development of approaches to analyze the heterogeneity of cell ... for measuring levels of mRNAs in individual cells have ...
Breaking Biology Technology: