Navigation Links
Pathogen turns protein into a virulence factor in 1 easy step
Date:5/6/2013

To infect its host, the respiratory pathogen Pseudomonas aeruginosa takes an ordinary protein usually involved in making other proteins and adds three small molecules to turn it into a key for gaining access to human cells. In a study to be published May 7 in mBio, the online open-access journal of the American Society for Microbiology, scientists at Emory University School of Medicine, the University of Virginia, and Universidad de las Islas Baleares in Mallorca, Spain, uncover this previously unknown virulence factor in P. aeruginosa, one of the most common causes of hospital-acquired pneumonia.

Co-author Joanna Goldberg of Emory says scientists have long thought P. aeruginosa mostly uses this protein called elongation factor-Tu (EF-Tu) inside the cell, but she and her collaborators have learned that as a virulence factor, it could represent a vulnerability for the bacterium. "EF-Tu is presumed to be an essential protein, and it's performing these moonlighting functions as well. If we figured out how it was doing that, we could devise strategies to inhibit it," says Goldberg.

P. aeruginosa pneumonia is a big problem in the hospital setting, where it is a frequent cause of hospital-acquired pneumonia and is the leading cause of death among critically ill patients whose airways have been damaged by ventilation, trauma, or other infections. The pathogen is also a contributor to disease in the lungs of cystic fibrosis patients and forms thick biofilms that are difficult or impossible to treat with antibiotics. Goldberg and her co-author Sebastian Alberti and their colleagues study the molecular events that enable the bacterium to infect human cells in the hopes of finding ways to prevent P. aeruginosa pneumonia.

In their earlier work, Goldberg and Alberti found that P. aeruginosa takes the protein EF-Tu, which was generally thought to exist only inside the cell, and decorates the exterior of the cell with it, but in a modified form. This modified EF-Tu is recognized by antibodies to the common bacterial epitope phosphorylcholine (ChoP), indicating that the EF-Tu is modified somehow to mimic ChoP, allowing P. aeruginosa to enjoy the benefits of ChoP. By interacting with receptors on human cells, ChoP carries out a crucial step for setting up an infection for a number of different types of respiratory pathogens.

But how is EF-Tu modified, they wondered? And does it help P. aeruginosa establish an infection? This study answers those questions.

Using a host of techniques, including mass spectrometry, site directed mutagenesis of key residues in the protein, and genetic loss of function/gain of function studies, they found that P. aeruginosa only makes small changes to EF-Tu to get it to mimic this powerful ligand. P. aeruginosa transfers three methyl groups to a lysine on EF-Tu, giving it a structure similar to ChoP and allowing it to fit in the PAFR receptor in the way ChoP does.

But the modified EF-Tu not only looks like ChoP, in many ways it works like ChoP: testing in cultures of human airway cells shows that the modification of EF-Tu enables the bacterium to adhere to human cells.

"It allows [P. aeruginosa] to adhere to the cells and invade," says Goldberg. "And it seems to be involved in virulence in mouse models. It might also impact persistence in the lung."

As an environmental pathogen, P. aeruginosa lives in soil, water, and other environments outside the body, a fact that may offer a clue why it uses this re-purposed protein as a virulence factor. Proteins that can be put to work in both worlds - in the environment and the in the human host - would be useful to P. aeruginosa in much the way a spork can allow you to enjoy both the coleslaw and the pudding in your take out dinner.

"Its interaction with humans is accidental. It's an opportunist. The fact that it has this novel modification on this protein that is inherent in the bacterium that enables it to attach and persist and cause disease is exciting," says Goldberg.


'/>"/>

Contact: Jim Sliwa
jsliwa@asmusa.org
202-942-9297
American Society for Microbiology
Source:Eurekalert

Related biology news :

1. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
2. Bees self-medicate when infected with some pathogens
3. College students work to sterilize air, kill pathogens on buses
4. Antitoxin strategy may help target other pathogens
5. Preserved frogs hold clues to deadly pathogen
6. A deeper look into the pathogen responsible for crown gall disease in plants
7. Differences in the genomes of related plant pathogens
8. New key element discovered in pathogenesis of Burkitt lymphoma
9. Compounds shown to thwart stubborn pathogens social propensity
10. Antibiotic residues in sausage meat may promote pathogen survival
11. Antibiotic-resistant pathogens persist in antibiotic-free pigs
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
(Date:3/18/2016)... --> --> Competitive Landscape ... Vehicles, Physical infrastructure and Perimeter Surveillance & Detection Systems ... market and the continuing migration crisis in the ... has led visiongain to publish this unique report, which is ... & security companies in the border security market and ...
(Date:3/15/2016)... March 15, 2016 Yissum Research Development ... technology-transfer company of the Hebrew University, announced today the ... sensing technology of various human biological indicators. Neteera Technologies ... million from private investors. ... the detection of electromagnetic emissions from sweat ducts, enables ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... Founder of ... board-certified in surgery and surgery of the hand by the National Board of ... to going above and beyond in his pursuit of providing the most comprehensive, ...
(Date:5/25/2016)... ... May 25, 2016 , ... WEDI, the nation’s leading authority ... announced that Charles W. Stellar has been named by the WEDI Board of Directors ... 2016. As an executive leader with more than 35 years of experience in healthcare, ...
(Date:5/24/2016)... Mass. (PRWEB) , ... May 24, 2016 , ... ... heart attacks, diabetes, and traumatic injuries, will be accelerated by research at Worcester ... cells into engines of wound healing and tissue regeneration. , The novel method, ...
(Date:5/24/2016)... ... May 24, 2016 , ... Media ... The new Media Cybernetics corporate branding reflects a results-driven revitalization for a company ... analysis. The re-branding components include a crisp, refreshed logo and a new web ...
Breaking Biology Technology: