Navigation Links
Pathogen study explores blocking effect of E. coli O157:H7 protein

MANHATTAN, KAN. -- Often the key to any victory is to fully understand your opponent. This is especially true when that opponent is a significant foodborne bacterial pathogen such as E. coli O157:H7.

Philip Hardwidge, associate professor at the College of Veterinary Medicine at Kansas State University, is studying how pathogens such as E. coli use proteins to block a host's innate immune system. This system is the body's first defense against infection, often presented in the body's mucosal surfaces such as those found in the intestine.

"In terms of infectious disease, this inhibition of the human innate immune response is absolutely critical for the bacteria's ability to cause an infection," said Hardwidge, who works in the diagnostic medicine and pathobiology department. "If we can identify choke points in the interaction between the bacterium and the host, we may be able to inhibit the bacterium and prevent its survival in an infected human being."

Hardwidge's lab received a multiyear grant from the National Institutes of Health to explore a protein expressed by pathogenic E. coli known as NleH1, which inhibits an important cellular signaling pathway called IKK/NF-B, or I-Kappa-Kinase/N-F-Kappa-B.

"This protein is one example of an injected bacterial protein that is able to block the innate immune system," Hardwidge said. "This protein has kind of an unusual mechanism that had not been seen in other bacterial or viral pathogens, so we're interested in understanding more about how this protein really works and whether it represents a good target for future therapeutics.

The exploration of these host-pathogen interactions requires the lab to use multidisciplinary approaches, including using animal models and advanced technologies such as quantitative polymerase chain reaction, or PCR.

"One of beauties of QPCR, or quantitative PCR, is that it gives a really reliable and easily to define comparative number of gene expression," said Mike Hays, microbiologist III in Hardwidge's lab. "It looks at a snapshot in time in that cellular environment and it could tell us at that snapshot in time, in that window, what the expression levels are of the genes that we're interested in."

Understanding how these bacterial proteins function in the host-pathogen interaction may also have applications for other human diseases.

"For example, many autoimmune diseases, many cancers and even diabetes are caused in part by an overactive component of this innate immune system," Hardwidge said. "Using information from bacteria and viruses that have evolved to block this overactive immune response, we may be able to engineer some of these bacteria proteins as potential therapeutics."

Through collaborations at Kansas State University and his position as a Chinese Academy of Sciences' senior international scientist, Hardwidge's future research will also explore both the role that the microbes that naturally live in the human body have in host-pathogen interactions and other forms of E. coli that afflict humans. Armed with this knowledge, researchers at the College of Veterinary Medicine will be able to reveal new strategies for defeating pathogens such as E. coli O157:H7.


Contact: Philip Hardwidge
Kansas State University

Related biology news :

1. New technique identifies pathogens in patient samples faster, in great detail
2. Study to identify functions of hypothetical genes in 2 infectious disease pathogens
3. Tuberculosis genomes portray secrets of pathogens success
4. Helper cells aptly named in battle with invading pathogens
5. Resistance gene found against Ug99 wheat stem rust pathogen
6. Recent progress in gene-sensing strategies for rapid detection of foodborne pathogens
7. Discovery of how a gene that regulates factors involved in bacteria pathogenicity acts
8. University of Toronto breakthrough allows fast, reliable pathogen identification
9. Pathogen turns protein into a virulence factor in 1 easy step
10. Predicting the next eye pathogen; analysis of a novel adenovirus
11. Vaccine adjuvant uses host DNA to boost pathogen recognition
Post Your Comments:
Related Image:
Pathogen study explores blocking effect of E. coli O157:H7 protein
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... -- Global demand for enzymes is forecast to grow ... billion.  This market includes enzymes used in industrial ... animal feed, and other markets) and specialty applications ... beverages will remain the largest market for enzymes, ... containing enzymes in developing regions.  These and other ...
(Date:6/27/2016)... , ... June 27, 2016 , ... Parallel 6 ... trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module which ... with the physician and clinical trial team. , Using the CONSULT module, patients and ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks ... to industrial engineering, was today awarded as one ... selection of the world,s most innovative companies. Ginkgo ... scale for the real world in the nutrition, ... engineers work directly with customers including Fortune 500 ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita ... miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the subject of ... now. , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue ...
Breaking Biology Technology: