Navigation Links
Parallel brainstem circuit discovery suggests new path in Parkinson's research

Chicago and Montreal researchers studying the lowly lamprey eel have identified an overlooked nervous system pathway running parallel to known brainstem locomotor command circuitry in vertebrates such as birds, fishes and mammals.

The finding is reported in Nature Neuroscience, online May 16, and highlighted in the magazine's "news and views" section.

Simon Alford, University of Illinois at Chicago professor of biological sciences and the article's corresponding author, said the role of a neurotransmitter associated with this parallel pathway may also suggest new research directions for treating Parkinson's disease.

Alford, along with his former graduate student and lead author Roy Smetana, now a University of Pittsburgh resident in psychiatry, worked with Universit de Montral and Universit de Qubec Montral neurobiologist Rjean Dubuc and his post-doctoral researcher Laurent Juvin in trying to sort out how the neurotransmitter analog muscarine modifies sensory information going to the brain.

Their work determined that muscarine stimulated neural activity, leading to locomotion in the laboratory lampreys.

The group focused its attention on a collection of brainstem neurons that tell the spinal cord to generate motor output that enables walking and other locomotion.

"We started looking at this group of neurons, which in the lamprey are conveniently very large, so they're easy to plant electrodes and record from," said Alford. "We discovered the muscarinic excitation was not working on these cells, but on a previously unknown group of cells within the brainstem."

What's more, these newly discovered brainstem neurons showed what Alford called a "very odd response" to the muscarine.

"Instead of just turning on -- like a synapse turns on a neuron and makes it fire -- when you put muscarine on these cells, they turn on and stay on" for a minute or longer which he said for a neurological reaction can be a very long time.

The researchers discovered the actual brain neurotransmitter that activates muscarine receptors -- another chemical, acetylcholine -- sends a signal to these newly discovered brainstem neurons, switching them on for the lengthy minute or so durations.

Alford said the finding opens up new insights into animal locomotion.

"It's a system for turning on your locomotor system and making you walk or run in a very coordinated, straight-line fashion sustaining locomotion for a considerable time," he said. "This simply was not known to exist before we discovered it."

The role of the neurotransmitter acetylcholine may ultimately suggest new Parkinson's disease treatments. While a key Parkinson's symptom is tremor, an advanced stage symptom is the inability to start a movement, such as walking. Symptoms associated with Parkinson's can be helped by reducing acetylcholine-mediated neurotransmission in the brain, but little work has focused on brainstem muscarine receptors in this disease.

"This may be a backdoor finding into a secondary effect of Parkinson's disease that's not well studied because most research emphasis has been on dopamine and the basal ganglia, a different neurotransmitter and region of the brain," Alford said.


Contact: Paul Francuch
University of Illinois at Chicago

Related biology news :

1. Quantum weirdness, parallel worlds, dinosaur poop, and the ultimate fate of the universe...
2. Small RNA plays parallel roles in bacterial metabolism
3. Microfluidic integrated circuit could help enable home diagnostic tests
4. Tissue engineering, imaging neuronal circuits featured in Cold Spring Harbor Protocols
5. Johns Hopkins scientists discover a controller of brain circuitry
6. NTU and EDB launch S$50 million ($36 million) integrated circuit design research center
7. Understanding a cells split personality aids synthetic circuits
8. Electrical circuit runs entirely off power in trees
9. Mouse brain rewires its neural circuits to recuperate from damaged neural function after stroke
10. CSHL study finds short- and long-term memories require same gene but in different circuits
11. Abnormal brain circuits may prevent movement disorder
Post Your Comments:
(Date:11/10/2015)... YORK , Nov. 10, 2015 ... to behavioral biometrics that helps to identify and ... fraud. Signature is considered as the secure and ... the identification of a particular individual because each ... more accurate results especially when dynamic signature of ...
(Date:10/29/2015)...   MedNet Solutions , an innovative SaaS-based eClinical ... research, is pleased to announce that it has been ... one of only three finalists for a 2015 ... Growing" category. The Tekne Awards honor Minnesota ... innovation and leadership. iMedNet™ eClinical ...
(Date:10/29/2015)... Connecticut , October 29, 2015 ... a biometric authentication company focused on the growing ... smart wallet announces that StackCommerce, a leading marketplace ... be featuring the Wocket® smart wallet on StackSocial ... NXTD ) ("NXT-ID" or the "Company"), a biometric ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... , Nov. 30, 2015  AbbVie, is introducing ... focuses on a daily routine for managing the life-long ... medication can affect the way the body absorbs it ... their a daily routine are important. The goal of ... patients better manage their hypothyroidism by establishing a daily ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... integration with MarkLogic, the Enterprise NoSQL database platform provider, creating a seamless ... , Smartlogic’s Content Intelligence capabilities provide a robust set of semantic tools ...
(Date:11/27/2015)... , Nov. 27, 2015 /PRNewswire/--  Mallinckrodt plc (NYSE: ... today that it has closed the sale of its ... Guerbet (GBT- NYSE Euronext) in a transaction valued at ... manufacturing facilities and a total of approximately 1,000 employees ... St. Louis area. This entire ...
(Date:11/26/2015)... 26, 2015 ... Accutest Research Laboratories, a leading independent ... (CRO), has formed a strategic partnership ... Temple Health for joint work on ... ) , --> ...
Breaking Biology Technology: