Navigation Links
Paper offers insights into network that plays crucial role in cell function and disease
Date:2/5/2014

A new research paper from the labs of University of Notre Dame researchers Holly Goodson and Mark Alber helps resolve an ongoing debate about the assembly of a subcellular network that plays a critical role in cell function and disease.

Goodson and her former postdoctoral fellow Kamlesh Gupta (now a senior scientist at W. M. Keck Center for Transgene Research) from the Department of Chemistry and Biochemistry teamed up with Alber's group from the Department of Applied and Computational Mathematics and Statistics, to study the dynamical behavior of subcellular fibers called microtubules. The microtubule cytoskeleton is a dynamic polymer network that plays a crucial role in cell division, assembling into the remarkable machine that partitions the DNA. It also forms a transport network that helps cells distribute nutrients and building materials.

"This fiber network is analogous to a railway system, with the microtubules acting as rails for molecular engines that move cargo containers around the cell," Goodson said. "However, unlike human railway systems, which are stable over time, the microtubules are constantly being laid down and picked up."

The constant turnover of these structures is important because it enables the transport network to find its cargo and rearrange in response to cell movements and division. Because of its significance for cell function, this microtubule turnover process is the target of some key anticancer drugs.

The microtubule assembly and dynamics are precisely controlled, and a key regulator is the microtubule destabilizer known as stathmin. Stathmin's precise method of action has been open to debate and has remained controversial. One proposed model is that it reduces polymer indirectly by sequestering microtubule units. Another model is that stathmin acts directly on microtubules by an as yet unknown mechanism.

The new paper by the Goodson and Alber groups provides a resolution to this debate by explaining how stathmin works. The experiments (primarily designed and performed by Kamlesh Gupta) present experimental evidence that stathmin can act directly on microtubules and it does so by binding and destabilizing segments of the assembling microtubule before they can be incorporated into the final microtubule structure. Accompanying computer simulations show that this type of molecular activity could produce the experimentally observed effects of microtubule dynamics.

"This work is significant because this disassembly process is essential for basic cell survival and because stathmin, also called oncoprotein 18, is dramatically over produced in a number of cancers," Alber said. "Understanding how the protein works is an important step towards figuring out how to inhibit it, which may provide a route for new anti-cancer drugs."


'/>"/>

Contact: Mark Alber
malber@nd.edu
574-631-8371
University of Notre Dame
Source:Eurekalert

Related biology news :

1. Two papers unraveled the mystery of sex determination and benthic adaptation of the flatfish
2. The Protein Society announces the selection of 2 Protein Science Best Paper speakers
3. Paper predicts a future without carnivores would be truly scary
4. Assessing dangerous climate change and call for climate change response papers
5. Paper-based device could bring medical testing to remote locales
6. Notre Dame paper sheds light on genetic and physiological basis for metabolic diseases
7. Managing waters shared across national boundaries: Treasury of papers helps capture 20 years of lessons
8. Does including parasites upset food web theory? Yes and no, says new paper
9. Stanford engineers monitor heart health using paper-thin flexible skin
10. New research paper says we are still at risk of the plague
11. Old records, new bees result in Science paper for MSU ecologist
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
Breaking Biology News(10 mins):
(Date:4/20/2017)... April 20, 2017 For today, Stock-Callers.com ... novel drug development and clinical research aimed at treating diseases ... (NASDAQ: BSTG), Keryx Biopharmaceuticals Inc. (NASDAQ: KERX), Kite Pharma Inc. ... ). You can access our complimentary research reports on these ... ...
(Date:4/19/2017)... , ... April 19, 2017 , ... Nobilis Therapeutics ... , Company Seeks to Leverage Clinical Data in its Upcoming Post Traumatic Stress Disorder ... of an 81 patient clinical trial assessing efficacy of its NBTX-001, a xenon-based therapeutic ...
(Date:4/19/2017)... Calif. , April 19, 2017  As ... Drug Abuse and Heroin Summit ,  Proove┬« Biosciences, ... study analyzing genetics, environmental, and lifestyle factors to ... from the University of Southern California (USC), the ... , and Proove publish results showing that Proove ...
(Date:4/18/2017)... ... April 18, 2017 , ... CallTower, an ... Next-Gen Solution Provider. , Channel Partners program recognizes IT and telecom channel leaders ... and advocacy of the channel during transition and convergence. CallTower is the first ...
Breaking Biology Technology: