Navigation Links
PET scans reveal estrogen-producing hotspots in human brain
Date:11/3/2010

UPTON, NY - A study at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has demonstrated that a molecule "tagged" with a radioactive form of carbon can be used to image aromatase, an enzyme responsible for the production of estrogen, in the human brain. The research, published in the November issue of Synapse, also uncovered that the regions of the brain where aromatase is concentrated may be unique to humans.

"The original purpose of the study was to expand our use of this radiotracer, N-methyl-11C vorozole," said Anat Biegon, a Brookhaven neurobiologist. "Proving that a radiotracer like vorozole can be used for brain-imaging studies in humans would be a gateway to new research on estrogen in the brain. You cannot look at these brain pathways in living humans in any other way."

Vorozole binds to aromatase, an essential catalyst in the biosynthesis of estrogen. Since estrogen is implicated in a range of conditions and pathologies, from breast cancer to Alzheimer's disease, studying its production in the human body using noninvasive imaging techniques like positron emission tomography (PET) can be a useful diagnostic and investigative tool. This is the first study to demonstrate that vorozole is a useful radiotracer for studying estrogen-producing hotspots in the human brain.

The team used PET to scan the brains of six young, healthy nonsmoking subjects - three men and three women. Researchers scanned the female subjects at either the midcycle or early follicular phase of the menstrual cycle, to incorporate variation in plasma estrogen levels. Prior to the scans, all subjects received an injection containing a radiolabeled form of vorozole, synthesized and purified by radiochemists at Brookhaven. The men underwent a second scan after being administered an aromatase inhibitor.

As expected, subjects who received the inhibitor showed low concentrations of radioactive vorozole, indicating lower availability of aromatase, compared to those not exposed to the inhibitor.

The scientists found a surprise, however, in the "geographical" (anatomical) distribution of aromatase in the brain. The highest levels of aromatase appeared in the thalamus and then the medulla, in a pattern that was consistent across all six subjects. This differs from what researchers have observed previously in animal studies, where aromatase is concentrated in smaller regions, principally the amygdala and preoptic areas.

"This started as a simple tool development study and now it's turned out to be much more interesting than that," Biegon said. "The question that's raised is what is aromatase doing in these particular brain regions?"

To answer this, Biegon and her colleagues have already begun studying a larger group of 30 subjects. They will examine differences in brain aromatase related to a range of factors including age, sex, personality, and memory. Beginning with healthy subjects and advancing to patients with specific conditions and diseases, they intend to study the role of estrogen in the brain with respect to disorders and diseases such as unusual aggression, breast cancer, and Alzheimer's disease.


'/>"/>

Contact: Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350
DOE/Brookhaven National Laboratory
Source:Eurekalert

Related biology news :

1. Study of severe asthma using CT scans
2. CT scans reveal that dinosaurs were airheads
3. New discovery may enhance MRI scans, lead to portable MRI machines
4. X-ray crystallography reveals structure of precursor to blood-clotting protein
5. Lead poisoning maps in R.I. reveal huge disparities, guide cleanup
6. Scientists reveal the sex wars of the truffle grounds
7. Devastating impact of spinal osteoporotic fractures revealed on World Osteoporosis Day
8. Optical technique reveals unnexpected complexity in mammalian olfactory coding
9. Genomic comparison of ocean microbes reveals East-West divide in populations
10. Study reveals cancer-linked epigenetic effects of smoking
11. UW-built device reveals invisible world teeming with microscopic algae
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... 2017 The research team of The Hong ... fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery and ... speed and accuracy for use in identification, crime investigation, immigration control, ... ... A research team led ...
(Date:3/27/2017)... ROCKVILLE CENTRE, N.Y. , March 27, 2017 ... by Healthcare Information and Management Systems Society (HIMSS) ... Analytics Outpatient EMR Adoption Model sm . In ... top 12% of U.S. hospitals using an electronic ... recognized CHS for its high level of EMR ...
(Date:3/23/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Vehicle Anti-Theft System ... over the next decade to reach approximately $14.21 billion by 2025. ... forecasts for all the given segments on global as well as ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... ... May 24, 2017 , ... Today, the South Davis Sewer ... Biological Nutrient Recovery (ABNRâ„¢) technology at its 4,000,000 gallon per day South Plant. ... sustainably meet current and future nutrient discharge regulations. The ABNR platform, which is ...
(Date:5/23/2017)... ... May 23, 2017 , ... Firmex ... that makes it easy for organizations to send and gather large files and ... software or email file size limitations. , Using the same market-tested infrastructure ...
(Date:5/23/2017)... (PRWEB) , ... May 22, 2017 , ... ... and Photonics 2017 in San Diego, California, this August will feature high-level ... fuels, and autonomous vehicles. , SPIE Optics and Photonics, the largest multidisciplinary optical ...
(Date:5/23/2017)... ... May 23, 2017 , ... Cambridge Semantics , the leading provider ... Bio-IT World Conference and Expo in Boston May 23-25 with a featured ... The Anzo Smart Data Lake is also a finalist for the Best of Show ...
Breaking Biology Technology: