Navigation Links
Overcoming anthrax bacterium's natural defenses could hold key to new treatments
Date:5/18/2010

Army scientists have discovered a way to "trick" the bacterium that causes anthrax into shedding its protective covering, making it easier for the body's immune system to mount a defense. The study, which appears in this month's issue of the journal MICROBIOLOGY, could lead to new approaches for treating anthrax infection.

Bacillus anthracis, the causative agent of anthrax, is particularly lethal because of its protective coating, or capsule, which enables the pathogen to escape destruction by the host's immune system. A key bacterial enzyme called capsule depolymerase, or CapD, anchors the capsule to the cell surface. CapD also cuts and releases part of the capsule into small fragments that are thought to interfere with specific parts of the immune system, offering further protection to the bacterium. The rest of the capsule remains intact.

Finding a way to cause B. anthracis to unmask itself, using the bacterium's own machinery, would be a novel approach to defeating the pathogen. So scientists at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) induced B. anthracis to make higher-than-normal amounts of CapD, resulting in release of the capsule fragments. This left very little capsule attached to the bacterial cells. As a result, the unprotected bacteria were left vulnerable to immediate detection and destruction by the cells of the immune system.

"By engineering B. anthracis to over-produce CapD, we are effectively turning the bacterium's own weapon on itself," explained Dr. Arthur Friedlander, one of the study's principal investigators. He believes the USAMRIID group's findings could have significant clinical impact.

"Many pathogenic bacteria, including B. anthracis, produce a capsule surrounding them that prevents the infected host from killing them, improving their chances of causing disease," he explained. "Understanding the mechanisms of virulence used by the anthrax bacterium is vital to developing medical countermeasures against it."

Anthrax most commonly occurs in wild and domestic mammals, although it has the potential to be used as a biological threat agent. Symptoms vary depending on the route of exposure; however, mild fever, fatigue and muscle aches usually begin within 4-6 days of exposure. As the bacteria multiply in the lymph nodes, toxemia progresses and the potential for widespread tissue dissemination, destruction and organ failure increases. Severe breathing difficulty, meningitis and shock can follow. Up to 90 percent of untreated cases of inhalational anthrax result in death.

"This study provides significant insight into the pathogenesis of anthrax infection, tracing the connection between B. anthracis gene expression to its effect on host response," said Colonel John P. Skvorak, commander of USAMRIID.


'/>"/>

Contact: Caree Vander Linden
Caree.VanderLinden@us.army.mil
301-619-2285
US Army Medical Research Institute of Infectious Diseases
Source:Eurekalert

Related biology news :

1. Overcoming Taboos, Myths, and Dogmas in Bioethics
2. Einstein scientists move closer to a safer anthrax vaccine
3. Single host gene may hold key to treating both ebola and anthrax infections
4. Early detection and quick response are key to defense against anthrax attack
5. Data published in the New England Journal of Medicine support use of raxibacumab (ABthrax) for the treatment of inhalation anthrax
6. Novel handheld device detects anthrax with outstanding accuracy and reliability
7. New technique used to profile anthrax genome
8. FBI unveils science of anthrax investigation
9. NIST, Army researchers pave the way for anthrax spore standards
10. New decontamination system kills anthrax rapidly without lingering effects
11. Anthrax cellular entry point uncovered
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... Nov. 29, 2016 BioDirection, a privately held ... for the objective detection of concussion and other traumatic ... successfully completed a meeting with the U.S. Food and ... test Pre-Submission Package. During the meeting company representatives reviewed ... a precursor to commencement of a planned pilot trial. ...
(Date:11/28/2016)... 28, 2016 "The biometric ... 16.79%" The biometric system market is in the ... the near future. The biometric system market is expected ... at a CAGR of 16.79% between 2016 and 2022. ... biometric technology in smartphones, rising use of biometric technology ...
(Date:11/22/2016)... 22, 2016   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that the ... and Life Sciences Awards as "Most Outstanding in ... unprecedented year of recognition and growth for MedNet, which ... years. iMedNet ™ , MedNet,s ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... More than $4.3 million was raised last night ... ). The gala was held at the American Museum of ... and honored Alan Alda and P. ... medicine and the public understanding of science. Since the first ... has raised $40 million for the Laboratory,s research and education ...
(Date:12/2/2016)... ... December 01, 2016 , ... ACEA Biosciences, Inc. announced today ... clinical trials for AC0010 at the World Conference on Lung Cancer 2016, taking place ... on the phase I/II clinical trials for AC0010 in patients with advanced non-small cell ...
(Date:12/2/2016)... (PRWEB) , ... December 01, 2016 , ... DrugDev ... industry-wide collaboration, standardization and a beautiful technology experience. All three tenets were on display ... 100 clinical trial leaders from over 40 sponsor, CRO and site organizations to discuss ...
(Date:12/2/2016)... The immunohistochemistry (IHC) market is projected to reach USD ... the forecast period of 2016 to 2021 dominated by immunohistochemistry (IHC) ... largest share of immunohistochemistry (IHC) market, by end user.   ... , , ... 225 pages, profiling 10 companies and supported with 181 tables and ...
Breaking Biology Technology: