Navigation Links
Over-produced autism gene alters synapses, affects learning and behavior in mice
Date:6/5/2013

EUGENE, Ore. -- (June 5, 2013) -- A gene linked to autism spectrum disorders that was manipulated in two lines of transgenic mice produced mature adults with irreversible deficits affecting either learning or social interaction.

The findings, published in the May 29 issue of the Journal of Neuroscience, have implications for potential gene therapies but they also suggest that there may be narrow windows of opportunity to be effective, says principal investigator Philip Washbourne, a professor of biology and member of the University of Oregon's Institute of Neuroscience.

The research, reported by an 11-member team from three universities, targeted the impacts of alterations in the gene neuroligin 1 -- one of many genes implicated in human autism spectrum disorders -- to neuronal synapses in the altered mice during postnatal development and as they entered adulthood. One group over-expressed the normal gene, the other a mutated version.

Mice with higher-than-normal levels of the normal gene after a month had skewed synapses at maturity. Many were larger, appearing more mature, than normal. In these mice, Washbourne said, there were clear cognitive problems. "Behavior was just not normal. They didn't learn very well, and they were slower to learn, but their social behavior was not impacted."

Mice over-producing a mutated version of the gene reached adulthood with structurally immature synapses. "They were held back in development and behavior -- the way they behave in terms of learning and memory, in terms of social interaction," he said. "These were adult mice, three months old, but they behaved like normal mice at four weeks old. We saw arrested development. Learning is a little bit better, they are more flexible just like young mice, they learn faster, but their social interaction is off. To us, this looked more like Asperger's syndrome.

"So with the same gene, doing two different manipulations -- overexpressing the normal form or overexpressing a mutated form -- we've gone to two different ends of the autism spectrum," said Washbourne, whose lab focuses on basic synapse formation and what goes wrong in relationship to autism. Work has been done in both mice and zebra fish.

"We made these mice so that we can turn the genes on and off as we want," Washbourne said. "Using an antibiotic, doxycycline, it turns off these altered genes that we inserted into their chromosomes. While on doxycycline, the mice are absolutely normal."

However, if the inserted gene was turned off after the completion of development, mice still showed altered synapses and behavior. This result suggests that any kind of gene therapy may have to be applied to individuals with autism early on.

Effects seen in the social behavior of mice with the mutated gene, he said, are not unlike observations reported by parents of many autistic children. While normal mice prefer to engage with new mice entering their world rather than familiar others, or even a new inanimate object, these mice split their time equally. "It's not a deficit in memory regarding which mouse is which, it's more a weighting of their interaction. Does that mean they are autistic? I don't know, but if you talk to parents of autistic children, one of the frustrating things they report is that their children treat complete strangers in exactly the same way that they treat them."

While the findings provide new insights, Washbourne said, any translation into treatment could be decades away. "A problem with autism is there are many different genes potentially involved. It could be that some day, if you are diagnosed with autism, a mouth swab might allow for the identification of the exact gene that is mutated and allow for targeted therapy," he said. "Genome sequencing already has turned up subtle mutations in lots of genes. Autism might be like cancer, with hundreds of potential combinations of faulty genes."

Co-authors with Washbourne were seven UO colleagues: doctoral students Jennifer L. Hoy, Michael Kyweriga and Lawrence Davis; postdoctoral researcher John R. L. Constable; undergraduate students Renee J. Arias and Raluca McCallum; and Michael Wehr, professor of psychology. Outside collaborators were Paola A. Haeger and Pablo E. Castillo, both of the Albert Einstein College of Medicine in New York, and Eric Schnell of the Portland VA Medical Center and Oregon Health and Science University in Portland.

"This research by Dr. Washbourne and his team has promise in the identification of potential targets for new treatments for those affected by autism spectrum disorders," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO graduate school. "Decades after initiating the basic science model for cracking the genetic code, researchers at the University of Oregon continue to do groundbreaking research that promises to improve the health and well-people of people throughout the world."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert

Related biology news :

1. Holding a mirror to brain changes in autism
2. Autism risk gene linked to differences in brain structure
3. Autism Speaks awards $1.1 million to fund high priority studies
4. Spontaneous gene glitches linked to autism risk with older dads
5. Gene mutation identified as contributor to autism spectrum disorders
6. Researchers across North America team up to find genetic markers for autism
7. New genes contributing to autism and related neurodevelopmental disorders uncovered
8. Research shows how PCBs promote dendrite growth, may increase autism risk
9. Common genetic variants identify autism risk in high risk siblings of children with ASD
10. MindSpec launches online Autism Reading Room
11. New treatment for irritability in autism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... YORK , March 30, 2017 Trends, ... type (physiological and behavioral), by technology (fingerprint, AFIS, iris ... voice recognition, and others), by end use industry (government ... and immigration, financial and banking, and others), and by ... Europe , Asia Pacific , ...
(Date:3/27/2017)... 2017  Catholic Health Services (CHS) has been ... (HIMSS) Analytics for achieving Stage 6 on the ... In addition, CHS previously earned a place in ... electronic medical record (EMR). "HIMSS Analytics ... EMR usage in an outpatient setting.  This recognition ...
(Date:3/23/2017)... , March 23, 2017 The report "Gesture Recognition and ... Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, the market ... CAGR of 29.63% between 2017 and 2022. Continue ... ... ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... ... April 27, 2017 , ... The Council for Agricultural ... to Jayson Lusk, a consummate communicator who promotes agricultural science and technology in ... as he explains how innovation and growth in agriculture are critical for food ...
(Date:4/26/2017)... ... April 26, 2017 , ... Looking for gift ... cooking events company, offers one-of-a-kind gifts, ranging from gourmet cooking experiences to Farmer’s ... and guests leave inspired with new cooking tips and techniques, thanks to Chef ...
(Date:4/26/2017)... ... April 25, 2017 , ... LABS, Inc. (LABS) announced in ... to its extensive test menu: Nucleic Acid Testing (NAT) for ZIKV; and Enzyme Immunoassays ... able to offer NAT screening for blood donors under an Investigational New Drug (IND) ...
(Date:4/26/2017)... , ... April 26, 2017 , ... ... and drive high-level conversations among healthcare industry stakeholders, the discussion surrounding the topic ... taking place May 15-18, 2017 in Los Angeles, Calif. Hosted by the Workgroup ...
Breaking Biology Technology: