Navigation Links
Outside a vacuum: Model predicts movement of charged particles in complex media
Date:11/28/2012

Picture two charged particles in a vacuum. Thanks to laws of elementary electrostatics, we can easily calculate the force these particles exert upon one another, and therefore predict their movements.

Submerge those particles in a simple medium say, water and the calculation grows more complex. The charged particles' movements influence the water, which in turn may slow, speed, or otherwise alter the particles' paths. In this environment a prediction must also consider the water's reaction, or its dielectric response.

But in real biological and material systems, media are also complex: plant cells and blood cells, for instance, are made up of several media and may be oddly shaped. This heterogeneity has made predicting the movement of charged particles in complex environments extremely challenging for theoretical physicists.

Now researchers at Northwestern University's McCormick School of Engineering have developed a model that can predict the reactions of charged particles in any media. Their computational discovery, which takes cues from nature, could find applications in biology, medicine, and synthetic materials research.

The model is the culmination of seven years of work by Monica Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering, Chemistry, and (by courtesy) Chemical and Biological Engineering at the McCormick School of Engineering, with partners from Arizona State University.

Creating molecular simulations in heterogeneous media requires two steps: measuring the effects of the medium's dielectric response on the charged particles and measuring the effects of the charged particles on the medium's dielectric response. In previous attempts at such simulations, models treated the two calculations separately, completing one set of calculations before turning to the next. This process required solving a differential equation that governs the motion of the charged particles namely, the Poisson equation at each step of the simulation.

The Northwestern researchers have developed a new, faster way that avoids the Poisson equation entirely. Using insight gleamed from nature, they have reframed the electrostatic problem as an energy-minimizing problem.

"Nature doesn't wait to figure out the response of the medium in order to move the charged particles, nor does it wait to position the particles before determining the response of the medium," said Olvera de la Cruz. "The dielectric response and the motion of the charged particles are inherently coupled, and our model mirrors that."

The researchers formulated a new function that gives the correct response of the medium and produces the true energy of the charged particles. This enabled them to update the position of the charged particles and the medium's response in the same simulation time step. Within this theoretical framework and simulation design, they were able to attack problems that were previously intractable.


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology news :

1. Fat outside of arteries may influence onset of coronary artery disease
2. Hyenas that think outside the box solve problems faster
3. First model of how buds grow into leaves
4. Parkinsons disease stopped in animal model
5. New method for estimating parameters may boost biological models
6. Bone marrow transplant arrests symptoms in model of Rett syndrome
7. 3-D RNA modeling opens scientific doors
8. NCEAS researchers offer new ecological model for deep-water oil spills
9. Patel recognized with NSF Career Award for computer-modeling research on cell membranes
10. Model forecasts long-term impacts of forest land-use decisions
11. A cells first steps: Building a model to explain how cells grow
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2017)... and ITHACA, N.Y. , June ... Cornell University, a leader in dairy research, today announced ... designed to help reduce the chances that the global ... onset of this dairy project, Cornell University has become ... Sequencing the Food Supply Chain, a food safety initiative ...
(Date:5/23/2017)...  Hunova, the first robotic gym for the rehabilitation and functional motor ... Genoa, Italy . The first 30 robots will be ... USA . The technology was developed and patented at the ... spin-off Movendo Technology thanks to a 10 million euro investment from entrepreneur ... ...
(Date:5/16/2017)... , May 16, 2017   Bridge Patient ... organizations, and MD EMR Systems , an ... partner for GE, have established a partnership to ... product and the GE Centricity™ products, including Centricity ... These new integrations will allow ...
Breaking Biology News(10 mins):
(Date:8/14/2017)... ... 14, 2017 , ... Opal Kelly, a leading producer of ... announced the release of SYZYGY™, a new open standard for connecting high-performance peripherals ... compact, low cost, low pin-count, high-performance connectivity solution between FPGAs and single-purpose hardware ...
(Date:8/11/2017)... Calif. (PRWEB) , ... August 11, 2017 , ... Algenist ... plant collagen-based formulation unlocking collagen like never before. , Collagen is the key ... firsts to market with Liquid Collagen™, which include: , ...
(Date:8/10/2017)... , ... August 09, 2017 , ... ... medicine applications in the clinic is here. The team at Capricor Therapeutics, Inc. ... conditioned medium for clinical studies. , Dr. Travis Antes, head of analytical ...
(Date:8/10/2017)... (PRWEB) , ... August 10, 2017 , ... DrugDev ... new educational webinar to demonstrate how Good Clinical Practice (GCP) can be ... documents. In addition the webinar will discuss the importance of GCP compliance, how sites ...
Breaking Biology Technology: