Navigation Links
Outside a vacuum: Model predicts movement of charged particles in complex media
Date:11/28/2012

Picture two charged particles in a vacuum. Thanks to laws of elementary electrostatics, we can easily calculate the force these particles exert upon one another, and therefore predict their movements.

Submerge those particles in a simple medium say, water and the calculation grows more complex. The charged particles' movements influence the water, which in turn may slow, speed, or otherwise alter the particles' paths. In this environment a prediction must also consider the water's reaction, or its dielectric response.

But in real biological and material systems, media are also complex: plant cells and blood cells, for instance, are made up of several media and may be oddly shaped. This heterogeneity has made predicting the movement of charged particles in complex environments extremely challenging for theoretical physicists.

Now researchers at Northwestern University's McCormick School of Engineering have developed a model that can predict the reactions of charged particles in any media. Their computational discovery, which takes cues from nature, could find applications in biology, medicine, and synthetic materials research.

The model is the culmination of seven years of work by Monica Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering, Chemistry, and (by courtesy) Chemical and Biological Engineering at the McCormick School of Engineering, with partners from Arizona State University.

Creating molecular simulations in heterogeneous media requires two steps: measuring the effects of the medium's dielectric response on the charged particles and measuring the effects of the charged particles on the medium's dielectric response. In previous attempts at such simulations, models treated the two calculations separately, completing one set of calculations before turning to the next. This process required solving a differential equation that governs the motion of the charged particles namely, the Poisson equation at each step of the simulation.

The Northwestern researchers have developed a new, faster way that avoids the Poisson equation entirely. Using insight gleamed from nature, they have reframed the electrostatic problem as an energy-minimizing problem.

"Nature doesn't wait to figure out the response of the medium in order to move the charged particles, nor does it wait to position the particles before determining the response of the medium," said Olvera de la Cruz. "The dielectric response and the motion of the charged particles are inherently coupled, and our model mirrors that."

The researchers formulated a new function that gives the correct response of the medium and produces the true energy of the charged particles. This enabled them to update the position of the charged particles and the medium's response in the same simulation time step. Within this theoretical framework and simulation design, they were able to attack problems that were previously intractable.


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology news :

1. Fat outside of arteries may influence onset of coronary artery disease
2. Hyenas that think outside the box solve problems faster
3. First model of how buds grow into leaves
4. Parkinsons disease stopped in animal model
5. New method for estimating parameters may boost biological models
6. Bone marrow transplant arrests symptoms in model of Rett syndrome
7. 3-D RNA modeling opens scientific doors
8. NCEAS researchers offer new ecological model for deep-water oil spills
9. Patel recognized with NSF Career Award for computer-modeling research on cell membranes
10. Model forecasts long-term impacts of forest land-use decisions
11. A cells first steps: Building a model to explain how cells grow
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/6/2017)... 2017 RAM Group , Singaporean ... breakthrough in biometric authentication based on a ... to perform biometric authentication. These new sensors are based ... by Ram Group and its partners. This sensor will ... chains and security. Ram Group is a next ...
(Date:4/13/2017)... 2017 UBM,s Advanced Design and Manufacturing event ... emerging and evolving technology through its 3D Printing and ... alongside the expo portion of the event and feature ... focused on trending topics within 3D printing and smart ... event will take place June 13-15, 2017 at the Jacob ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... ... 2017 , ... AMRI, a global contract research, development and ... outcomes and quality of life, will now be offering its impurity solutions as ... regulatory requirements for all new drug products, including the finalization of ICH M7 ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back ... 8th June 2018 in San Francisco, CA. The Summit brings together current and former ... CEOs, board directors and government officials from around the world to address key issues ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new ... rates in frozen and fresh in vitro fertilization (IVF) transfer cycles. ... to IVF success. , After comparing the results from the fresh and frozen ...
Breaking Biology Technology: