Navigation Links
Our microbes, ourselves

In terms of diversity and sheer numbers, the microbes occupying the human gut easily dwarf the billions of people inhabiting the Earth. Numbering in the tens of trillions and representing many thousands of distinct genetic families, this microbiome, as it's called, helps the body perform a variety of regulatory and digestive functions, many still poorly understood.

How this microbial mlange may be linked to body weight changes associated with morbid obesity is a relevant and important clinical question that has received recent attention. Now, a new study suggests that the composition of microbes within the gut may hold a key to one cause of obesityand the prospect of future treatment.

In the January 19 early online edition of the Proceedings of the National Academy of Science, researchers at Arizona State University's Biodesign Institute in collaboration with colleagues at the Mayo Clinic, Arizona, and the University of Arizona, reveal a tantalizing link between differing microbial populations in the human gut and body weight among three distinct groups: normal weight individuals, those who have undergone gastric bypass surgery, and patients suffering the condition of morbid obesitya serious, often life-threatening condition associated with diabetes, cardiovascular disease, cancer and psychosocial disorders. Obesity affects around 4 million Americans and, each year, some 300,000 die from obesity-related illness.

A collaboration aimed at uncovering the links between the microbial composition of the human gut and morbid obesity began when Dr. John DiBaise, a gastroenterologist at the Mayo Clinic, Arizona, became interested in both the underlying mechanisms of obesity and plausible alternatives to gastric bypass surgerystill the only reliable long-term treatment for the extremely overweight.

DiBaise turned to Bruce Rittmann, Ph.D., an environmental engineer and a member of National Academy of Engineering, whose Center for Environmental Biotechnology uses its expertise to examine microbial populations important for cleaning up pollutants and generating renewable bioenergy. Rittmann invited Rosa Krajmalnik-Brown, assistant professor of civil and environmental engineering, to collaborate and apply her microbial ecology expertise to this project. The three researchers were able to leverage seed funding from the Mayo Clinic and ASU so that they could combine their respective talents. DiBaise recruited 9 middle-aged volunteers in three groupsnormal weight, morbidly obese and following gastric bypass surgeryto participate in the study.

The research team's central hypothesis is that differing microbial populations in the gut allow the body to harvest more energy, making people more susceptible to developing obesity. These small differences can, over time, profoundly affect an individual's weight. Supporting this view is the study's confirmation that the microbial composition among obese patients appears significantly altered compared with both normal weight individuals and those who have undergone gastric bypass surgery.

A microbial managerie

To tease out the microbial human gut composition, Husen Zhang, a postdoctoral scholar working with Rittmann and Krajmalnik-Brown, used an advanced DNA sequencing technology and sophisticated ecological tools. The team examined 184,094 gene sequences of microbial 16S rRNA, a molecular structure which provides a characteristic fingerprint for microbial identification. The analysis was conducted with the assistance of University of Arizona's Rod Wing at the Bio5 Institute, using a novel sequencing technique known as 454-pyrosequencing, which allows a significantly larger number and greater diversity of gut microbia to be identified.

The group's latest findings represent the first investigation of gut microbiota from post-gastric-bypass patients to date.

By examining a specific region of the 16S rRNA gene known as V6PCR amplified from the stool samples of the 9 test subjectsthe researchers were able to classify a zoo of microorganisms, which fell into 6 broad categories, with two bacterial phyla, the bacteroidetes and firmicutes, predominanting.

The resulting composition of gut microbiota in the three gastric bypass patients differed substantially and in potentially important ways from obese and normal weight individuals. This means the drastic anatomical changes created by gastric bypass surgery appear to have profound effects on the microorganisms that inhabit the intestine. This change may be part of the reason that gastric-bypass surgery is the most effective means to treat obesity today.

The team's study is the first molecular survey of gut microbial diversity following surgical weight loss, and has helped solidify the link between methane producing microbes and obesity. Specifically, the microbial populations extracted from obese individuals were high in a particular microbial subgroup, hydrogen-producing bacteria known as prevotellaceae. Further, such hydrogen producers appear to coexist with hydrogen-consuming methanogens, found in abundance in obese patients, but absent in both normal weight and gastric bypass samples. Unlike the hydrogen producers, however, these methane-liberating hydrogen consumers are not bacteria. They belong instead to the third great microbial domainthe Archaea, (with Eukarya and Bacteria making up the other two).

Energy managers

During the course of digestion, calories are extracted from food and stored in fat tissue for later usea process delicately regulated by the multitude of microbial custodians. The intermediary products of the digestive process include hydrogen, carbon dioxide and several short chain fatty acids (SCFAs).

Results suggest a cooperative co-existence in obese individuals between hydrogen-producers and hydrogen consuming methanogens. Rittmann explains how this mutually reinforcing relationship, known as syntrophy, may contribute to obesity:

"Organisms producing hydrogen and acetate create a situation like cars flooding onto the highway. The methanogens, which remove the hydrogen, are like the offramps, allowing the hydrogen cars to get off. That allows more acetate cars to get on, because some hydrogen cars are coming off the highway."

The methanogen offramps, by removing hydrogen, accelerate the efficient fermentation of otherwise indigestible plant polysaccharides and carbohydrates. The effect is to boost production of SCFAs, particularly acetate, which will be taken up by the intestinal epithelium and converted to fat. The result over time may be increasing weight, eventually leading to obesity.

While weight regulation involves a complex interplay of genetic predisposition, exercise, eating habits, and other factors, manipulation of the gut's microflora, particularly the methanogenic Archaea, may provide additional avenues for the treatment of morbid obesity.

The researchers stress that the study is preliminary, but were encouraged by the findings from their small sample. Future investigation is needed to establish the differences in composition of gut microbiota across different age groups and under varying weight-loss regimens involving diet and exercise. Nevertheless, the study's findings point to new avenues for modifying the body's energy harvesting efficiencyperhaps by manipulation of the Bacteria-Archaea nexus.


Contact: Joe Caspermeyer
Arizona State University

Related biology news :

1. Microbes, by latitudes and altitudes, shed new light on lifes diversity
Post Your Comments:
Related Image:
Our microbes, ourselves
(Date:11/17/2015)... Pressure BioSciences, Inc. (OTCQB: PBIO) ("PBI" and ... of broadly enabling, pressure cycling technology ("PCT")-based sample preparation ... it has received gross proceeds of $745,000 from an ... "Offering"), increasing the total amount raised to date in ... are expected in the near future. ...
(Date:11/11/2015)... MedNet Solutions , an innovative SaaS-based eClinical technology company that ... announce that it will be a Sponsor of the ... held November 17-19 in Hamburg , Germany.  ... iMedNet , MedNet,s easy-to-use, proven and affordable eClinical ... able to deliver time and cost savings of up to ...
(Date:11/4/2015)... 2015 --> ... by Transparency Market Research "Home Security Solutions Market - Global ... - 2022", the global home security solutions market is expected to ... The market is estimated to expand at a CAGR ... 2022. Rising security needs among customers at homes, the ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... DIEGO , Nov. 24, 2015 Halozyme Therapeutics, Inc. ... Healthcare Conference in New York on Wednesday, ... Helen Torley , president and CEO, will provide a corporate ... New York at 1:00 p.m. ET/10:00 a.m. PT ... and investor relations, will provide a corporate overview. --> ...
(Date:11/24/2015)...  Clintrax Global, Inc., a worldwide provider of clinical research services ... that the company has set a new quarterly earnings record in ... growth posted for Q3 of 2014 to Q3 of 2015.   ... , with the establishment of an Asia-Pacific ... United Kingdom and Mexico , ...
(Date:11/24/2015)... , November 24, 2015 ... market research report released by Transparency Market Research, the ... at a CAGR of 17.5% during the period between ... Market - Global Industry Analysis, Size, Volume, Share, Growth, ... non-invasive prenatal testing market to reach a valuation of ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... InSphero AG, ... 3D cell culture models, has promoted Melanie Aregger to serve as Chief Operating Officer. ... Aregger served on the management team and was promoted to Head of ...
Breaking Biology Technology: