Navigation Links
Origami inspires research into materials that self-assemble when exposed to light
Date:8/23/2012

A multi-university research team led by North Carolina State University will be developing methods to create two-dimensional (2-D) materials capable of folding themselves into three-dimensional (3-D) objects when exposed to light. The effort, which is funded by a grant from the National Science Foundation (NSF), is inspired by origami and has a broad range of potential applications.

"We're pulling together a diverse team of designers, engineers and mathematicians to advance our understanding of how to manipulate photoresponsive materials," says Dr. Jan Genzer, Celanese Professor of Chemical and Biomolecular Engineering at NC State and the primary investigator under the NSF grant. "Ultimately, we hope to develop new techniques that have applications ranging from electronics to high-volume manufacturing to the delivery of humanitarian relief." The NSF grant is for approximately $1.76 million over four years.

Specifically, the researchers plan to use experiments and computational models to evaluate the folding process in order to develop new multi-functional 3-D structures that can form rapidly while retaining precise control over their shape. Because the patterns will be on 2-D materials, the process should be compatible with high-throughput patterning techniques, such as roll-to-roll patterning used in electronics manufacturing.

Potential applications include the development of unfoldable air foils that could be used for airdrops of humanitarian supplies with greater precision; hands-free assembly of electronics in a "clean" environment; or various packaging and manufacturing processes.

The research team includes Genzer; Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State; Dr. Yong Zhu, an assistant professor of mechanical and aerospace engineering at NC State; Susan Brandeis, Distinguished Professor of Art and Design at NC State; Dr. Alan Russell, of Elon University, who has studied origami for more than 30 years; Emily Beck, of Meredith College; and Dr. Rich Vaia, of the Air Force Research Laboratory. The grant will also support four to five graduate students and post-doctoral research associates.

The research effort builds on earlier research from NC State, which detailed a simple way to convert 2-D patterns into 3-D objects using only light. In that work, the researcher ran pre-stressed plastic sheets through a conventional inkjet printer to print bold black lines on the material. The material was then cut into a desired pattern and placed under an infrared light, such as a heat lamp. Because the bold black lines absorbed more energy than the rest of the material, the plastic contracted creating a hinge that folded the sheets into 3-D shapes. A video demonstration of the previous work can be seen here.

The grant is being funded through NSF's Office of Emerging Frontiers in Research and Innovation, and is supported in part by funds from the Air Force Office of Scientific Research.


'/>"/>

Contact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University
Source:Eurekalert  

Related biology news :

1. The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami
2. Human eye inspires clog-free ink jet printer invented by MU researcher
3. New book inspires children to protect dugongs
4. MDA supports Duchenne muscular dystrophy research by University of Nevada School of Medicine
5. Iowa State, Ames Lab researchers study the structure of drug resistance in tuberculosis
6. Lawson researcher sings the baby blues
7. Brazil joins international marine research effort
8. Research identifies mechanism responsible for eye movement disorder
9. Research reveals unique solution to gene regulation
10. Organic study of live pancreatic tissue yields new opportunities for diabetes research
11. ASU awarded $3 million to research solar energy technologies, launch energy Ph.D. program
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Origami inspires research into materials that self-assemble when exposed to light
(Date:4/28/2016)... , April 28, 2016 First quarter 2016: ... up 966% compared with the first quarter of 2015 ... SEK 589.1 M (loss: 18.8) and the operating margin was 40% ... 0.32) Cash flow from operations was SEK 249.9 M ... revenue guidance is unchanged, SEK 7,000-8,500 M. The operating ...
(Date:4/15/2016)... Research and Markets has announced ... 2016-2020,"  report to their offering.  , ... global gait biometrics market is expected to grow ... 2016-2020. Gait analysis generates multiple variables ... to compute factors that are not or cannot ...
(Date:3/29/2016)... LegacyXChange, Inc. (OTC: LEGX ... Protect are pleased to announce our successful effort to ... of writing instruments, ensuring athletes signatures against counterfeiting and ... athletes on LegacyXChange will be assured of ongoing proof ... Bill Bollander , CEO states, "By inserting ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Brooklyn, NY (PRWEB) , ... June 24, 2016 , ... ... 15mm, machines such as the Cary 5000 and the 6000i models are higher end ... height is the height of the spectrophotometer’s light beam from the bottom of the ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
Breaking Biology Technology: