Navigation Links
Orientation of antenna protein in photosynthetic bacteria described
Date:4/2/2009

Researchers at Washington University in St. Louis have figured out the orientation of a protein in the antenna complex to its neighboring membrane in a photosynthetic bacterium, a key find in the process of energy transfer in photosynthesis.

Robert Blankenship, Ph.D., Markey Distinguished Professor of biology and chemistry in Arts & Sciences, led a team that for the first time combined chemical labeling with mass spectroscopy to verify the orientation. The team also included Michael Gross, Ph.D., Washington University professor of chemistry, immunology and medicine, and chemistry graduate students Jianzhong Wen and Hao Zhang. A paper describing this work appeared recently in the Proceedings of the National Academy of Sciences USA.

In green sulfur bacteria, which live in extremely dim environments with scarce visible light, the membrane-attached Fenna-Matthews-Olson (FMO) antenna protein serves as a sort of wire connecting the large peripheral chlorosome antenna complex with the organism's reaction center. These bacteria are related to extreme heat-loving bacteria that live at thermal vents on the ocean floor. Their antenna systems are much larger and more pronounced than those of other bacteria to take advantage of whatever geothermal light they can harvest.

Blankenship fondly refers to the FMO protein as the taco shell protein because of its structure: its ribbon-like backbone wraps around three clusters of seven chlorophylls, just like a taco shell around ground beef. The structure also is referred to as trimeric because of the three clusters.

The taco shell is a sort of "middleman" in the antenna system, sandwiched in between a larger antenna and a complex called the reaction center, where all the electron transfer chemistry takes place. Most of the absorption of light is carried out by a complex called the chlorosome that then transfers the energy to the trimeric protein that in turn transfers to the reaction center.

Photosynthesis transforms light, carbon dioxide and water into chemical energy in plants and some bacteria. The wavelike characteristic of this energy transfer process can explain its extreme efficiency, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer. "We used a combination of tried and true methods, but two that hadn't been used together in the past," said Blankenship. "The surface of the protein has various amino acid residues, and some of those are reactive to the chemical probe we added into the system. The surface residues that react to the probe are then labeled, and we isolate the protein and characterize where the label is in the protein by using mass spectroscopy. That's a kind of footprinting analysis.'

This allowed the researchers to determine how the protein is oriented on the membrane. The footprinting revealed that the energy will flow from the outer part of the antenna, through the mid-part and into the membrane where the reaction center is located.

"The bacteria use the energy of the pigments as a kind of ladder," he said. "As it goes on this ladder, it goes to lower and lower energy states and is guided down to the lowest energy state. That's the funneling effect the physical guiding of the energy to the reaction center. By knowing exactly how this orientation is on the membrane, we determined the funneling property in a more precise ways."

The biochemical aspects of the project were done in the Blankenship lab, while the mass spectrometry analysis was done in the Washington University NIH Mass Spectrometry Resource Facility that is directed by Gross.

The trimeric protein the taco shell protein has a symmetry axis down the middle. The protein lays on the membrane with the symmetry axis perpendicular to the membrane. The combination of labeling and mass spectroscopy enabled the researchers to determine which side of the protein was up, which down.

"It turns out that the side that is down is the one that has the pigment with the lowest energy, which is exactly what you want to facilitate the energy transfer,' Blankenship said. "That's what you would imagine if you designed it yourself."


'/>"/>

Contact: Robert Blankenship
blankenship@wustl.edu
314-935-7971
Washington University in St. Louis
Source:Eurekalert

Related biology news :

1. Is political orientation transmitted genetically?
2. Scientists alter sexual orientation in worms
3. UC Davis researchers identify a protein that may help breast cancer spread, beat cancer drugs
4. New high-throughput screening technique makes probing puzzling proteins possible
5. Scripps scientists find structure of a protein that makes cancer cells resistant to chemotherapy
6. Protein is key to embryonic stem cell differentiation
7. Scripps research scientists watch as individual alpha-synuclein proteins change shape
8. Study of protein structures reveals key events in evolutionary history
9. Pitt researchers describe molecular 2-step leading to protein clumps of Huntingtons disease
10. Protein structure determined in living cells
11. Protein function and chromatin structure methods featured in Cold Spring Harbor Protocols
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/14/2016)... 2016 BioCatch ™, the ... announced the appointment of Eyal Goldwerger as ... Goldwerger,s leadership appointment comes at a time of ... deployment of its platform at several of the world,s ... discerns unique cognitive and physiological factors, is a winner ...
(Date:3/31/2016)... R.I. , March 31, 2016  Genomics firm ... of founding CEO, Barrett Bready , M.D., who ... members of the original technical leadership team, including Chief ... President of Product Development, Steve Nurnberg and Vice President ... returned to the company. Dr. Bready served ...
(Date:3/22/2016)... March 22, 2016 ... Sensors Market for Consumer Industry by Type (Image, ... Application (Communication & IT, Entertainment, Home Appliances, ... Forecast to 2022", published by MarketsandMarkets, the ... to reach USD 26.76 Billion by 2022, ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... 29, 2016 According to ... Research "Separation Systems for Commercial Biotechnology Market - ... Forecast 2015 - 2023", the separation systems for ... Mn in 2014 and is projected to expand ... 2023 to reach US$ 19,227.8 Mn in 2023. ...
(Date:4/29/2016)... ... 29, 2016 , ... Intelligent Implant Systems announced today that the two-level components ... in the United States. These components expand the capabilities of the system and ... beginning in October of 2015, the company has seen significant sales growth in 1Q ...
(Date:4/28/2016)... NEW YORK , April 28, 2016 /PRNewswire/ ... biotechnology acceleration company reports the Company,s CEO  was ... capital titled Accelerators Enter When VCs Fear To ... Life Science Leader magazine is an ... work for everything from emerging biotechs to Big ...
(Date:4/28/2016)... ... April 28, 2016 , ... ... investments in recruiting top industry experts, and expanding its LATAM network and logistics ... tools for clients to manage their clinical trial projects. , The expansion will ...
Breaking Biology Technology: