Navigation Links
Organization of cellular photosystems
Date:4/9/2014

A new DFG Research Unit funded will study the biogenesis of the complex membrane systems in which the light reactions of photosynthesis take place.

Professor Jrg Nickelsen of the Biocenter at Ludwig-Maximilians-Universitaet (LMU) in Munich will act as the official Speaker for the new Research Unit devoted to "Biogenesis of Thylakoid Membranes: Spatiotemporal Organization of Photosynthetic Protein Complex Assembly" and funded by the German Research Foundation (DFG). The venture has been approved by the DFG and will receive funding amounting to nearly 2 million euros. The interdisciplinary and multicenter network brings LMU scientists together with colleagues based in Bayreuth, Berlin, Bochum, Kaiserslautern and Potsdam to analyze the assembly of thylakoids. Thylakoids are membrane systems present in certain bacteria and in higher plants, which harbor the photosynthetic apparatus that converts solar radiation into chemical energy. "The new Research Unit represents a unique combination of expertise in molecular genetics, biochemistry, biophysics and structural analysis, allowing us to adopt a systematic approach to the analysis of the molecular details of the photosynthetic process," Nickelsen explains.

A complex interplay of multiple factors

By utilizing sunlight for the production of molecular oxygen and energy-rich organic compounds, photosynthesis provides the essential basis for all life on earth. Solar energy is captured by photoreactive molecules located in the thylakoids, and converted into a biochemically useful form in the so-called light reactions. Thylakoids are specialized membrane systems found in some bacterial species and in the chloroplasts of plant cells, and they are the most complicated type of biological energy-producing membranes known. Although their structure and function have been extensively investigated, little is known about how they are actually put together.

The assembly of thylakoids requires a complex interplay between proteins, lipids, pigments and inorganic cofactors, which the members of the new Research Unit plan to dissect. Recent findings suggest that the spatial organization of the components involved plays an important, but hitherto poorly understood, role in the whole process. "Thylakoids have become more complex during the course of evolution, so we intend to study their synthesis in different model organisms," Nickelsen says. "In this way, we hope to be able to reconstruct the evolutionary trajectory that led from the relatively simple photosynthetic membranes of primitive cyanobacteria to the intricately structured thylakoid networks found in higher plants."

Two projects for LMU groups

LMU's contribution to the new Research Unit consists primarily of two projects. Nickelsen and his coworkers will study the biogenesis of the thylakoid membrane of cyanobacteria. They will focus in particular on the question of how the metal manganese is incorporated into the reaction centers located in the thylakoids. The metal is an essential component of the photosystem, because it is intimately involved in the generation of chemical energy and catalyzes the synthesis of molecular oxygen.

LMU biologist Professor Dario Leister will investigate the origins of the highly characteristic spatial organization of the thylakoids in plant chloroplasts. In these organelles, thylakoid disks form localized "pillars" that are reminiscent of stacked dinner-plates. But disks and pillars are in fact connected to each other to form a single continuous compartment. In order to maintain contact with their immediate neighbors, the membranes forming the disk margins must be strongly bent. Leister and his group will concentrate on understanding how this localized curvature is imposed.

DFG-funded Research Units enable teams of researchers working together to tackle important problems in their respective fields and to develop innovative and interdisciplinary approaches to their resolution. In addition to LMU researchers, teams based at Bayreuth University, the Humboldt University in Berlin, the University of the Ruhr in Bochum, the Technical University in Kaiserslautern and the Max Planck Institute of Plant Physiology in Potsdam form part of the new Research Unit.


'/>"/>

Contact: Luise Dirscherl
dirscherl@lmu.de
49-892-080-2706
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. New organization brings together top researchers to sequence the genomes of invertebrates
2. Unisys Security Experts Predict 2014 Will Be "The Year of Encryption" as Organizations Combat Growing Cyber Threats
3. New organization brings together top researchers to sequence genomes of invertebrates
4. UMass Amherst physics professor wins grant to study organization inside cells space
5. Join Leading Organizations at Biodetection Technologies 2013 in Alexandria, VA from June 18-19, 2013
6. Governor Corbett Presented 2013 Biotechnology Industry Organization Governor of the Year Award
7. Federal Government Organization achieves cleaner and faster Clinical Study Data using Tablet PCs from TabletKiosk
8. Japanese research organizations contribute to Human Brain Project
9. New look at cell membrane reveals surprising organization
10. Pan-European organizations call for an advanced understanding of the human brain
11. Algae Biomass Organization hails new UCSD study showing saltwater algae viable for biofuels
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
(Date:6/9/2016)... Paris Police Prefecture ... solution to ensure the safety of people and operations in ... major tournament Teleste, an international technology group specialised ... today that its video security solution will be utilised by ... public safety across the country. The system roll-out is scheduled ...
(Date:6/2/2016)... LONDON , June 2, 2016 ... has awarded the 44 million US Dollar project, ... Security Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... world leader in the production and implementation of Identity Management ... in January, however Decatur was selected ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Global demand for enzymes ... through 2020 to $7.2 billion.  This market includes ... cleaning products, biofuel production, animal feed, and other ... and biocatalysts). Food and beverages will remain the ... increasing consumption of products containing enzymes in developing ...
(Date:6/27/2016)... ... , ... Parallel 6 , the leading software as a service (SaaS) ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication between ... Using the CONSULT module, patients and physicians can schedule a face to face virtual ...
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Researchers at ... most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the ... read it now. , Diagnostic biomarkers are signposts in the blood, lung fluid ...
Breaking Biology Technology: