Navigation Links
Organic solids in soil may speed up bacterial breathing
Date:5/23/2010

MADISON The "mineral-breathing" bacteria found in many oxygen-free environments may be "carbon-breathing" as well.

Oxygen-free, or anaerobic, environments contain microbes sometimes described as "mineral-breathing" because they use iron oxides and other minerals in the same way we use oxygen. According to a study published online May 23 in the journal Nature Geoscience, this bacterial respiration may be accelerated by solid organic compounds in the soil.

Led by University of Wisconsin-Madison geoscientist Eric Roden, the new work shows that iron oxide-breathing bacteria can do the same with insoluble organic substances, formed when plants and other organic materials biodegrade in soils and sediments. During respiration, the bacteria release electrons that interact with nearby substances, a process called reduction. Reduction of large organic molecules called humics and familiar to gardeners as part of planting soil represents a new pathway for electrical charges to move around in the environment, with implications for understanding soil chemistry and environmental contamination.

"The reason this is so important is that when the humic substances are reduced that is, when they go from having less electrons to having more electrons they are very reactive with other things, in particular iron oxides," says Roden, an expert on sediment geochemistry and microbiology.

Iron is both highly reactive and very abundant on Earth, making it a key element for understanding the chemistry, biology, and geology of natural environments.

"All kinds of things follow iron oxides organic contaminants, inorganic contaminants, energy flow, mineral transformations on Earth, speculation about possible iron-based microbial life on other worlds," Roden says. Insoluble organic compounds in the soil are a "player in that whole picture that no one had recognized before."

Similar reactions had previously been described with dissolved organic compounds, Roden says, but insoluble ones likely play a larger role in natural environments. "Most of the organic material in soil and sediment is not in solution. It's the gunk at the bottom of the lake, the dirt, the muck in the wetlands."

He and colleagues in Madison and Germany analyzed the insoluble humics by adapting existing techniques, including electron spin resonance and transmission electron microscopy, to confirm that the organic compounds receive electrons from the bacteria and pass them along to iron oxides.

In fact, the electrons shuttle more quickly from the cells to iron oxides when humics are present, Roden says. A group of Dutch scientists recently found electrical currents flowing through marine sediments. Though he has not yet tested the idea, Roden suggests that plant-derived organic compounds could act like wires to enhance the transmission of electrons through soil environments.

"The insoluble humic materials could be an integral part of this previously unrecognized pathway for electrons to move around in sediments," he says. "The bottom line is that reduction of insoluble humics may influence all the kinds of reactions that depend on the oxidation-reduction chemistry in sediments. It's a new twist."


'/>"/>

Contact: Eric Roden
eroden@geology.wisc.edu
608-890-0724
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Can organic labels backfire?
2. Cover crop mulches tested for no-till organic onions
3. Measuring the stability of organic waste
4. Ecology in organic ag: Combining farming, science
5. NPL supports growing organic electronics industry
6. Organic weed control for dandelions
7. Organic food not nutritionally better than conventionally-produced food
8. NTU professor discovers method to efficiently produce less toxic drugs using organic molecules
9. Can organic cropping systems be as profitable as conventional systems?
10. Can organic cropping systems be as profitable as conventional systems?
11. Engineers develop method to disperse chemically modified graphene in organic solvents
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/5/2017)... KEY FINDINGS The global market ... CAGR of 25.76% during the forecast period of 2017-2025. ... for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is segmented ... The stem cell market of the product is segmented ...
(Date:4/3/2017)...  Data captured by IsoCode, IsoPlexis Corporation,s ... statistically significant association between the potency of ... objective response of cancer patients post-treatment. The ... cancer patients will respond to CAR-T cell ... to improve both pre-infusion potency testing and cell ...
Breaking Biology News(10 mins):
(Date:6/27/2017)... ... June 27, 2017 , ... Indiana-based Xylogenics announced ... production and fermentation process. The efficiencies created by the newest strain design ... notably the ethanol industry wherein individual production plants are planning to invest upwards ...
(Date:6/26/2017)... ... ... Two new members were elected to the University City Science Center’s Board ... J Nowak Strategy and Michele Masucci, Ph.D., Vice President for Research Administration at Temple ... Kenneth L. Kring, and re-election of David P. Holveck and Richard P. Jaffe, as ...
(Date:6/23/2017)... ... June 23, 2017 , ... The Academy of Model ... University Aviation Association (UAA), the unifying voice for collegiate aviation education, are launching ... teamwork, competition, and success through a STEM-based education platform. , Much like the ...
(Date:6/22/2017)... ... June 22, 2017 , ... ... designating infertility as a disease, bringing new hope for prospective parents who are ... annual meeting to back the World Health Organization’s designation in hopes of changing ...
Breaking Biology Technology: