Navigation Links
Optical waveguide connects semiconductor chips
Date:9/20/2012

A team of KIT researchers directed by Professor Christian Koos has succeeded in developing a novel optical connection between semiconductor chips. "Photonic wire bonding" reaches data transmission rates in the range of several terabits per second and is suited perfectly for production on the industrial scale. In the future, this technology may be used in high-performance emitter-receiver systems for optical data transmission and, thus, contribute to reducing energy consumption of the internet. The scientists published their results in the journal "Optics Express".

Communication processes can be made quicker and more energy-efficient with photonic components. Development of high-performance optical emitters and receivers integrated on microchips has already reached a high level. However, there have not yet been any satisfactory possibilities of bridging semiconductor chips optically. "The biggest difficulty consists in aligning the chips precisely such that the waveguides meet," explains Christian Koos, professor at the KIT Institutes of Photonics and Quantum Electronics (IPQ) and of Microstructure Technology (IMT) as well as member of the Center for Functional Nanostructures (CFN).

The team under Christian Koos tackles this problem from the other side: The researchers first fix the chips and then structure a polymer-based optical waveguide in a perfectly fitting manner. To adapt the interconnection to the position and orientation of the chip, the scientists developed a method for the three-dimensional structuring of an optical waveguide. They used so-called two-photon polymerization which reaches a high resolution. A femtosecond laser writes the free-form waveguide structure directly into a polymer that is located on the surface of the chip. For this purpose, the KIT researchers use a laser lithography system made by the Nanoscribe company, a spinoff of KIT.

Prototypes of the photonic wire bonds reached very small losses and a very high transmission bandwidth in the range of infrared telecommunication wavelengths around 1.55 micrometers. In first experiments, the researchers already demonstrated data transmission rates in excess of 5 terabits per second. Potential applications of photonic wire bonds lie in complex emitter-receiver systems for optical telecommunication as well as in sensor and measurement technology. As the highly precise orientation of the chips in manufacturing is no longer required, the process is particularly suited for the automatic production of large series. KIT researchers now plan to transfer this technology to industrial application in cooperation with partner companies.


'/>"/>

Contact: Monika Landgraf
presse@kit.edu
49-721-608-47414
Helmholtz Association of German Research Centres
Source:Eurekalert  

Related biology news :

1. Linking and lightening: New partnership connects and reveals dark data
2. University of North Texas Health Science Center Advances Forensic Research by Investing in Semiconductor DNA Sequencing Technology
3. Wyss Institute receives up to $37 million from DARPA to integrate organ chips to mimic the human body
4. NIH funds development of tissue chips to help predict drug safety
5. Red potato chips: Segmentation cues can substantially decrease food intake
6. Team including UC Riverside entomologist honored for research leading to healthier potato chips
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Optical waveguide connects semiconductor chips
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
Breaking Biology News(10 mins):
(Date:6/28/2017)... York and London, June 28, 2017 (PRWEB) , ... ... ... The latest release of Siemens’ STAR-CCM+® software for multiphysics computational ... which enable automated product design exploration and optimization. STAR-CCM+ version 12.04 introduces ...
(Date:6/27/2017)... ... June 27, 2017 , ... The recent vote by ... as a disease gives new hope to patients and hopefully sheds new light on ... Silverberg, M.D. , an infertility expert and founding partner of Texas Fertility Center ...
(Date:6/27/2017)... ... June 27, 2017 , ... ... powder activated carbon (PAC)-based materials do not have negative short- or long-term effects ... site contaminated with polychlorinated biphenyls (PCBs) located at the Puget Sound Naval Shipyard ...
(Date:6/26/2017)... ... June 26, 2017 , ... ... the former Associate Director of Product Development R&D at Allergan and CMC expert ... at both start-up and established biopharma companies, has joined the firm as an ...
Breaking Biology Technology: